BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 24368868)

  • 1. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.
    Yashima H; Sekimoto S; Ninomiya K; Kasamatsu Y; Shima T; Takahashi N; Shinohara A; Matsumura H; Satoh D; Iwamoto Y; Hagiwara M; Nishiizumi K; Caffee MW; Shibata S
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):139-43. PubMed ID: 24368868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a quasi-monoenergetic neutron field using the 7Li(p,n)7Be reaction in the energy range from 250 to 390 MeV at RCNP.
    Taniguchi S; Nakao N; Nakamura T; Yashima H; Iwamoto Y; Satoh D; Nakane Y; Nakashima H; Itoga T; Tamii A; Hatanaka K
    Radiat Prot Dosimetry; 2007; 126(1-4):23-7. PubMed ID: 17502318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CROSS SECTIONS MEASURED BY QUASI-MONOENERGETIC NEUTRONS.
    Majerle M; Ansorge M; Bém P; Novák J; Šimecková E; Štefánik M
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):386-390. PubMed ID: 29474643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.
    Brede HJ; Greif KD; Hecker O; Heeg P; Heese J; Jones DT; Kluge H; Schardt D
    Phys Med Biol; 2006 Aug; 51(15):3667-82. PubMed ID: 16861773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC.
    Atanackovic J; Matysiak W; Witharana S; Dubeau J; Waker AJ
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):221-4. PubMed ID: 24298169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-differential heavy-ion production cross sections.
    Miller TM; Townsend LW
    Radiat Prot Dosimetry; 2004; 110(1-4):53-6. PubMed ID: 15353621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement and simulation of neutron beam fluence energy distributions at the neutron time-of-flight facility of iThemba Labs.
    Herbert MS
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):377-82. PubMed ID: 24667277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison doses of secondary neutron with the heavy ions in a 75-Mev/n heavy ion beam.
    Dang B; Li W; Wang J
    Radiat Prot Dosimetry; 2005; 117(4):369-72. PubMed ID: 16046558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Installation and application of an intense 7Li(p,n) neutron source for 20-90 MeV region.
    Baba M; Okamura H; Hagiwara M; Itoga T; Kamada S; Yahagi Y; Ibe E
    Radiat Prot Dosimetry; 2007; 126(1-4):13-7. PubMed ID: 17517671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy response of the PRESCILA and WENDI-II neutron rem meters.
    Olsher RH; McLean TD
    Radiat Prot Dosimetry; 2008; 130(4):510-3. PubMed ID: 18381335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
    Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M
    Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking of activation reaction distribution in an intermediate energy neutron field.
    Ogawa T; Morev MN; Hirota M; Abe T; Koike Y; Iwai S; Iimoto T; Kosako T
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):356-9. PubMed ID: 21515619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of the response functions of a large size NE213 organic liquid scintillator for neutrons up to 800 MeV.
    Taniguchi S; Moriya T; Takada M; Hatanaka K; Wakasa T; Saito T
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):175-9. PubMed ID: 16604622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distributions of residuals produced inside a spallation target.
    Pohorecki W; Horwacik T; Janczyszyn J; Taczanowski S; Bamblevski VP; Gustov SA; Mirokhin IV; Molokanov AG; Polanski A
    Radiat Prot Dosimetry; 2005; 115(1-4):630-3. PubMed ID: 16381796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.
    Aslam ; Waker AJ
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):467-70. PubMed ID: 21183541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The TSL neutron beam facility.
    Prokofiev AV; Blomgren J; Byström O; Ekström C; Pomp S; Tippawan U; Ziemann V; Osterlund M
    Radiat Prot Dosimetry; 2007; 126(1-4):18-22. PubMed ID: 17510200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COMPREHENSIVE RADIATION DOSE MEASUREMENTS AND MONTE CARLO SIMULATION FOR THE 7Li(p,n) ACCELERATOR NEUTRON FIELD.
    Darvish-Molla S; Prestwich WV; Byun SH
    Radiat Prot Dosimetry; 2016 Dec; 171(4):421-430. PubMed ID: 26464524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.
    Hsu YC; Lai BL; Sheu RJ
    Radiat Prot Dosimetry; 2016 Jan; 168(1):124-33. PubMed ID: 25628454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast neutron calibration fields constructed using a proton accelerator of KIRAMS and spectrumweighted response of various neutron detectors.
    Kim SI; Chang I; Kim BH; Kim JL; Lee JI
    Radiat Prot Dosimetry; 2014 Mar; 158(4):487-96. PubMed ID: 24080781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.