These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 24368868)

  • 41. Neutron production in tissue-like media and shielding materials irradiated with high-energy ion beams.
    Gudowska I; Kopec M; Sobolevsky N
    Radiat Prot Dosimetry; 2007; 126(1-4):652-6. PubMed ID: 17504751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Results of field trials using the NPL simulated reactor neutron field facility.
    Taylor GC; Thomas DJ; Bennett A
    Radiat Prot Dosimetry; 2007; 126(1-4):89-92. PubMed ID: 17848380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.
    Satoh D; Takahashi F; Endo A; Ohmachi Y; Miyahara N
    J Radiat Res; 2008 Sep; 49(5):503-8. PubMed ID: 18580044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculation of energy distributions of charged particles produced by neutrons from 0.14 to 65 MeV in tissue substitutes.
    Tsuda S; Nakane Y; Yamaguchi Y
    Radiat Prot Dosimetry; 2007; 126(1-4):174-7. PubMed ID: 17569688
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photon doses in NPL standard neutron fields.
    Roberts NJ; Horwood NA; McKay CJ
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):157-60. PubMed ID: 24126485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.
    Lee PY; Liu YH; Jiang SH
    Appl Radiat Isot; 2014 Jun; 88():206-10. PubMed ID: 24721900
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neutron-induced light-ion production from Fe, Pb and U at 96 MeV.
    Pomp S; Blideanu V; Blomgren J; Eudes P; Guertin A; Haddad F; Johansson C; Klug J; Le Brun Ch; Lecolley FR; Lecolley JF; Lefort T; Louvel M; Marie N; Prokofiev A; Tippawan U; Ohrn A; Osterlund M
    Radiat Prot Dosimetry; 2007; 126(1-4):123-5. PubMed ID: 17510204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neutron spectrometry with a monolithic silicon telescope.
    Agosteo S; D'Angelo G; Fazzi A; Para AF; Pola A; Zotto P
    Radiat Prot Dosimetry; 2007; 126(1-4):210-7. PubMed ID: 17522037
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-energy quasi-monoenergetic neutron fields: existing facilities and future needs.
    Pomp S; Bartlett DT; Mayer S; Reitz G; Röttger S; Silari M; Smit FD; Vincke H; Yasuda H
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):62-6. PubMed ID: 24153422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement and analysis of induced activities in concrete irradiated using high-energy neutrons at KENS Neutron Spallation Source Facility.
    Oishi K; Nakao N; Kosako K; Yamakawa H; Nakashima H; Kawai M; Yashima H; Sanami T; Numajiri M; Shibata T; Hirayama H; Nakamura T
    Radiat Prot Dosimetry; 2005; 115(1-4):623-9. PubMed ID: 16381795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Induced radioactivity in CU targets produced by high-energy heavy ions and the corresponding estimated photon dose rates.
    Yashima H; Uwamino Y; Sugita H; Ito S; Nakamura T; Fukumura A
    Radiat Prot Dosimetry; 2004; 112(2):195-208. PubMed ID: 15280565
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.
    Pytel K; Józefowicz K; Pytel B; Koziel A
    Radiat Prot Dosimetry; 2004; 110(1-4):823-6. PubMed ID: 15353753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of the neutron contribution in the 6 MeV to 7 MeV high energy photon reference field.
    Röttger S; Heiske A; Nolte R
    Radiat Prot Dosimetry; 2009 Jul; 135(3):162-8. PubMed ID: 19535380
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit.
    Pshenichnov I; Mishustin I; Greiner W
    Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
    De Smet V; Stichelbaut F; Vanaudenhove T; Mathot G; De Lentdecker G; Dubus A; Pauly N; Gerardy I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):417-21. PubMed ID: 24255173
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of the fast neutron standard using a Be({alpha},n) reaction at the National Metrology Institute of Japan.
    Shimoyama T; Harano H; Matsumoto T; Moriyama K; Hata T; Kudo K; Koyamada T; Uritani A
    Radiat Prot Dosimetry; 2007; 126(1-4):130-3. PubMed ID: 17513862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neutron dosimetry in high energy X-ray beams of medical accelerators.
    Sohrabi M; Morgan KZ
    Phys Med Biol; 1979 Jul; 24(4):756-66. PubMed ID: 112596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photon dose mixed in monoenergetic neutron calibration fields using 7Li(p,n)7Be reaction.
    Tanimura Y; Tsutsumi M; Yoshizawa M
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):149-52. PubMed ID: 24482042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of portable long counter with two different moderator materials.
    Tanimura Y; Tsutsumi M; Yoshizawa M
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):144-8. PubMed ID: 24489018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV.
    Fehrenbacher G; Kozlova E; Gutermuth F; Radon T; Schütz R; Nolte R; Böttger R
    Radiat Prot Dosimetry; 2007; 126(1-4):546-8. PubMed ID: 17561518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.