These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 24369106)
21. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Liu X; Yang L; Zhao H; Wang W Sci Total Environ; 2020 Mar; 708():134479. PubMed ID: 31796288 [TBL] [Abstract][Full Text] [Related]
22. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E; Bossa N; Wiesner MR; Gunsch CK Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610 [TBL] [Abstract][Full Text] [Related]
23. Residual impact of aged nZVI on heavy metal-polluted soils. Fajardo C; Gil-Díaz M; Costa G; Alonso J; Guerrero AM; Nande M; Lobo MC; Martín M Sci Total Environ; 2015 Dec; 535():79-84. PubMed ID: 25863574 [TBL] [Abstract][Full Text] [Related]
24. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Oleszczuk P; Kołtowski M Chemosphere; 2017 Feb; 168():1467-1476. PubMed ID: 27916262 [TBL] [Abstract][Full Text] [Related]
25. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization. Zhang W; Qian L; Ouyang D; Chen Y; Han L; Chen M Chemosphere; 2019 Apr; 221():683-692. PubMed ID: 30669110 [TBL] [Abstract][Full Text] [Related]
26. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Ou JH; Sheu YT; Tsang DCW; Sun YJ; Kao CM Chemosphere; 2020 Oct; 256():127158. PubMed ID: 32470741 [TBL] [Abstract][Full Text] [Related]
27. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. Huang XY; Ling L; Zhang WX J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172 [TBL] [Abstract][Full Text] [Related]
28. Impacts of a novel strain QY-1 allied with chromium immobilizing materials on chromium availability and soil biochemical properties. Hou S; Wu B; Luo Y; Li Y; Ma H; Peng D; Xu H J Hazard Mater; 2020 Jan; 382():121093. PubMed ID: 31476721 [TBL] [Abstract][Full Text] [Related]
29. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483 [TBL] [Abstract][Full Text] [Related]
30. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. Hou S; Wu B; Peng D; Wang Z; Wang Y; Xu H Environ Pollut; 2019 Sep; 252(Pt A):553-561. PubMed ID: 31181500 [TBL] [Abstract][Full Text] [Related]
31. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. Galdames A; Ruiz-Rubio L; Orueta M; Sánchez-Arzalluz M; Vilas-Vilela JL Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32796749 [TBL] [Abstract][Full Text] [Related]
32. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron. Qian L; Liu S; Zhang W; Chen Y; Ouyang D; Han L; Yan J; Chen M J Colloid Interface Sci; 2019 Jan; 533():428-436. PubMed ID: 30172153 [TBL] [Abstract][Full Text] [Related]
33. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934 [TBL] [Abstract][Full Text] [Related]
34. Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer. Ren L; Dong J; Chi Z; Huang H J Environ Sci (China); 2018 Nov; 73():96-106. PubMed ID: 30290877 [TBL] [Abstract][Full Text] [Related]
36. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Xie Y; Cwiertny DM Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304 [TBL] [Abstract][Full Text] [Related]
37. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046 [TBL] [Abstract][Full Text] [Related]
38. Green Synthesis of Resin Supported Nanoiron and Evaluation of Efficiency for the Remediation of Cr(VI) Contaminated Groundwater by Batch Tests. Toli A; Varouxaki A; Mystrioti C; Xenidis A; Papassiopi N Bull Environ Contam Toxicol; 2018 Dec; 101(6):711-717. PubMed ID: 30171287 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of montmorillonite-supported nano-zero-valent iron via green tea extract: Enhanced transport and application for hexavalent chromium removal from water and soil. Yang J; Wang S; Xu N; Ye Z; Yang H; Huangfu X J Hazard Mater; 2021 Oct; 419():126461. PubMed ID: 34186421 [TBL] [Abstract][Full Text] [Related]
40. Transport of nZVI/copper synthesized by green tea extract in Cr(IV)-contaminated soil: modeling study and reduced toxicity. Zhu F; Li T; Liu J Environ Sci Pollut Res Int; 2024 Mar; 31(13):20499-20509. PubMed ID: 38374508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]