These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 24369106)
41. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Saccà ML; Fajardo C; Costa G; Lobo C; Nande M; Martin M Chemosphere; 2014 Jun; 104():184-9. PubMed ID: 24287264 [TBL] [Abstract][Full Text] [Related]
42. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Qian L; Shang X; Zhang B; Zhang W; Su A; Chen Y; Ouyang D; Han L; Yan J; Chen M Chemosphere; 2019 Jan; 215():739-745. PubMed ID: 30347367 [TBL] [Abstract][Full Text] [Related]
43. Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles. Singh R; Misra V; Singh RP Environ Monit Assess; 2012 Jun; 184(6):3643-51. PubMed ID: 21769560 [TBL] [Abstract][Full Text] [Related]
44. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Tilston EL; Collins CD; Mitchell GR; Princivalle J; Shaw LJ Environ Pollut; 2013 Feb; 173():38-46. PubMed ID: 23202280 [TBL] [Abstract][Full Text] [Related]
45. Penicillium oxalicum SL2-enhanced nanoscale zero-valent iron effectively reduces Cr(VI) and shifts soil microbiota. Luo Y; Pang J; Pan S; Wang J; Jiang X; Xu Q; Zhang H; Ruan C; Ren J; Zhang C; Shi J J Hazard Mater; 2024 May; 469():134058. PubMed ID: 38508106 [TBL] [Abstract][Full Text] [Related]
46. Improved longevity of nanoscale zero-valent iron with a magnesium hydroxide coating shell for the removal of Cr(VI) in sand columns. Hu YB; Zhang M; Li XY Environ Int; 2019 Dec; 133(Pt B):105249. PubMed ID: 31665676 [TBL] [Abstract][Full Text] [Related]
47. Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron. Li Z; Xu S; Xiao G; Qian L; Song Y J Environ Manage; 2019 Aug; 244():33-39. PubMed ID: 31108308 [TBL] [Abstract][Full Text] [Related]
48. Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Lacalle RG; Garbisu C; Becerril JM Environ Sci Pollut Res Int; 2020 Sep; 27(25):31726-31736. PubMed ID: 32504423 [TBL] [Abstract][Full Text] [Related]
49. Kinetic Modeling of Cr(VI) Reduction by nZVI in Soil: The Influence of Organic Matter and Manganese Oxide. Di Palma L; Verdone N; Vilardi G Bull Environ Contam Toxicol; 2018 Dec; 101(6):692-697. PubMed ID: 29987516 [TBL] [Abstract][Full Text] [Related]
50. Cr(VI) removal during cotransport of nano-iron-particles combined with iron sulfides in groundwater: Effects of D. vulgaris and S. putrefaciens. Liu X; Chen M; Wang D; Du F; Xu N; Sun W; Han Z J Hazard Mater; 2024 Jul; 472():134583. PubMed ID: 38749250 [TBL] [Abstract][Full Text] [Related]
51. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867 [TBL] [Abstract][Full Text] [Related]
52. Chromium Removal Using Soil Loaded with Green Iron Nanoparticles. Mystrioti C; Mpouras T; Papassiopi N; Dermatas D Bull Environ Contam Toxicol; 2021 Mar; 106(3):453-457. PubMed ID: 32870332 [TBL] [Abstract][Full Text] [Related]
53. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Chang MC; Kang HY J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920 [TBL] [Abstract][Full Text] [Related]
54. Toxicity of nZVI in the growth of bacteria present in contaminated soil. Vanzetto GV; Thomé A Chemosphere; 2022 Sep; 303(Pt 1):135002. PubMed ID: 35597456 [TBL] [Abstract][Full Text] [Related]
55. Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. Wu L; Liao L; Lv G; Qin F J Contam Hydrol; 2015 Aug; 179():1-9. PubMed ID: 26011800 [TBL] [Abstract][Full Text] [Related]
56. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. Chrysochoou M; Johnston CP; Dahal G J Hazard Mater; 2012 Jan; 201-202():33-42. PubMed ID: 22169240 [TBL] [Abstract][Full Text] [Related]
57. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles. Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248 [TBL] [Abstract][Full Text] [Related]
58. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Pinilla P; Lobo MC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1361-9. PubMed ID: 25072767 [TBL] [Abstract][Full Text] [Related]
59. Iron nanoparticles to recover a co-contaminated soil with Cr and PCBs. Gil-Díaz M; Pérez RA; Alonso J; Miguel E; Diez-Pascual S; Lobo MC Sci Rep; 2022 Mar; 12(1):3541. PubMed ID: 35241772 [TBL] [Abstract][Full Text] [Related]
60. Are contaminated soil and groundwater remediation with nanoscale zero-valent iron sustainable? An analysis of case studies. Visentin C; Braun AB; Reginatto C; Cecchin I; Vanzetto GV; Thomé A Environ Pollut; 2024 Jul; 352():124167. PubMed ID: 38754689 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]