These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 24369106)
61. Effects of surface-modified biochars and activated carbon on the transformation of soil inorganic nitrogen and growth of maize under chromium stress. Zhu Y; Li H; Wu Y; Yin XA; Zhang G Chemosphere; 2019 Jul; 227():124-132. PubMed ID: 30986594 [TBL] [Abstract][Full Text] [Related]
62. Sustainable remediation of Cr(VI)-contaminated soil by soil washing and subsequent recovery of washing agents using biochar supported nanoscale zero-valent iron. Yuan Z; Peng A; Chu Z; Zhang X; Huang H; Mi Y; Xia D; Wu X; Ye Z; Tao Y; Yan X Sci Total Environ; 2024 Apr; 921():171107. PubMed ID: 38387560 [TBL] [Abstract][Full Text] [Related]
63. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966 [TBL] [Abstract][Full Text] [Related]
64. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Aparicio JD; Lacalle RG; Artetxe U; Urionabarrenetxea E; Becerril JM; Polti MA; Garbisu C; Soto M Environ Res; 2021 Mar; 194():110666. PubMed ID: 33359700 [TBL] [Abstract][Full Text] [Related]
65. Remediation of Cr(VI)-Contaminated Soil by Biochar-Supported Nanoscale Zero-Valent Iron and the Consequences for Indigenous Microbial Communities. Yang J; Tan X; Shaaban M; Cai Y; Wang B; Peng Q Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234667 [TBL] [Abstract][Full Text] [Related]
66. A comparative study with biologically and chemically synthesized nZVI: applications in Cr (VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Ravikumar KV; Kumar D; Rajeshwari A; Madhu GM; Mrudula P; Chandrasekaran N; Mukherjee A Environ Sci Pollut Res Int; 2016 Feb; 23(3):2613-27. PubMed ID: 26432266 [TBL] [Abstract][Full Text] [Related]
67. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. Gómez-Sagasti MT; Epelde L; Anza M; Urra J; Alkorta I; Garbisu C J Hazard Mater; 2019 Feb; 364():591-599. PubMed ID: 30390579 [TBL] [Abstract][Full Text] [Related]
68. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Xie Y; Dong H; Zeng G; Tang L; Jiang Z; Zhang C; Deng J; Zhang L; Zhang Y J Hazard Mater; 2017 Jan; 321():390-407. PubMed ID: 27669380 [TBL] [Abstract][Full Text] [Related]
69. Reduction of Hexavalent Chromium by Green Tea Polyphenols and Green Tea Nano Zero-Valent Iron (GT-nZVI). Chrysochoou M; Reeves K Bull Environ Contam Toxicol; 2017 Mar; 98(3):353-358. PubMed ID: 27510992 [TBL] [Abstract][Full Text] [Related]
70. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. Liu T; Zhao L; Sun D; Tan X J Hazard Mater; 2010 Dec; 184(1-3):724-730. PubMed ID: 20855161 [TBL] [Abstract][Full Text] [Related]
71. Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment. Huang JF; Li YT; Wu JH; Cao PY; Liu YL; Jiang GB Carbohydr Polym; 2016 Aug; 146():115-22. PubMed ID: 27112857 [TBL] [Abstract][Full Text] [Related]
72. [Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic]. Ma SY; Zhu F; Shang ZF Huan Jing Ke Xue; 2016 May; 37(5):1953-9. PubMed ID: 27506053 [TBL] [Abstract][Full Text] [Related]
73. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. El-Temsah YS; Joner EJ Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781 [TBL] [Abstract][Full Text] [Related]
74. Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column. Qu G; Kou L; Wang T; Liang D; Hu S J Environ Manage; 2017 Oct; 201():378-387. PubMed ID: 28697381 [TBL] [Abstract][Full Text] [Related]
75. Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soil under chromium-containing slag heap. Chai LY; Huang SH; Yang ZH; Peng B; Huang Y; Chen YH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):615-22. PubMed ID: 19337925 [TBL] [Abstract][Full Text] [Related]
76. Remediation and its biological responses to Cd(II)-Cr(VI)-Pb(II) multi-contaminated soil by supported nano zero-valent iron composites. Jin Y; Wang Y; Li X; Luo T; Ma Y; Wang B; Liang H Sci Total Environ; 2023 Apr; 867():161344. PubMed ID: 36610630 [TBL] [Abstract][Full Text] [Related]
77. Coupling electrokinetic remediation with flushing using green tea synthesized nano zero-valent iron/nickel to remediate Cr (VI). Zhu F; Yang Y; Ren W; Iribagiza RM; Wang W Environ Geochem Health; 2023 Dec; 45(12):9691-9707. PubMed ID: 37812370 [TBL] [Abstract][Full Text] [Related]
78. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material. Zhu F; Li L; Ren W; Deng X; Liu T Environ Pollut; 2017 Aug; 227():444-450. PubMed ID: 28486187 [TBL] [Abstract][Full Text] [Related]
79. Simultaneous stabilization of Pb and improvement of soil strength using nZVI. Zhou WH; Liu F; Yi S; Chen YZ; Geng X; Zheng C Sci Total Environ; 2019 Feb; 651(Pt 1):877-884. PubMed ID: 30257228 [TBL] [Abstract][Full Text] [Related]
80. Cr(VI) immobilization in soil using lignin hydrogel supported nZVI: Immobilization mechanisms and long-term simulation. Liu X; Zhang S; Zhang X; Guo H; Lou Z; Zhang W; Chen Z Chemosphere; 2022 Oct; 305():135393. PubMed ID: 35724719 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]