BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24369124)

  • 41. PNA-nitrogen mustard conjugates are effective suppressors of HER-2/neu and biological tools for recognition of PNA/DNA interactions.
    Zhilina ZV; Ziemba AJ; Nielsen PE; Ebbinghaus SW
    Bioconjug Chem; 2006; 17(1):214-22. PubMed ID: 16417271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural diversity of target-specific homopyrimidine peptide nucleic acid-dsDNA complexes.
    Bentin T; Hansen GI; Nielsen PE
    Nucleic Acids Res; 2006; 34(20):5790-9. PubMed ID: 17053099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Liposomes as carriers for DNA-PNA hybrids.
    Nastruzzi C; Cortesi R; Esposito E; Gambari R; Borgatti M; Bianchi N; Feriotto G; Mischiati C
    J Control Release; 2000 Aug; 68(2):237-49. PubMed ID: 10925132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cationic shell-cross-linked knedel-like (cSCK) nanoparticles for highly efficient PNA delivery.
    Fang H; Zhang K; Shen G; Wooley KL; Taylor JS
    Mol Pharm; 2009; 6(2):615-26. PubMed ID: 19231840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptide nucleic acids (PNA) and PNA-DNA chimeras: from high binding affinity towards biological function.
    Uhlmann E
    Biol Chem; 1998; 379(8-9):1045-52. PubMed ID: 9792437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nuclear localization and antisense effect of PNA internalized by ASGP-R-mediated endocytosis with protein/DNA conjugates.
    Ishihara T; Kano A; Obara K; Saito M; Chen X; Park TG; Akaike T; Maruyama A
    J Control Release; 2011 Oct; 155(1):34-9. PubMed ID: 20955741
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carrier PNA for shRNA delivery into cells.
    Kitamatsu M; Kubo T; Matsuzaki R; Endoh T; Ohtsuki T; Sisido M
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3410-3. PubMed ID: 19481448
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradable poly(ester amine) based on glycerol dimethacrylate and polyethylenimine as a gene carrier.
    Arote RB; Hwang SK; Yoo MK; Jere D; Jiang HL; Kim YK; Choi YJ; Nah JW; Cho MH; Cho CS
    J Gene Med; 2008 Nov; 10(11):1223-35. PubMed ID: 18773499
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in uptake, localization, and processing of PNAs modified by COX VIII pre-sequence peptide and by triphenylphoshonium cation into mitochondria of tumor cells.
    Lamla M; Seliger H; Kaufmann D
    Drug Deliv; 2010 May; 17(4):263-71. PubMed ID: 20307248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peptide nucleic acid (PNA) binding-mediated gene regulation.
    Wang G; Xu XS
    Cell Res; 2004 Apr; 14(2):111-6. PubMed ID: 15115611
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.
    Bertucci A; Lülf H; Septiadi D; Manicardi A; Corradini R; De Cola L
    Adv Healthc Mater; 2014 Nov; 3(11):1812-7. PubMed ID: 24789252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cellular delivery of peptide nucleic acids and inhibition of human telomerase.
    Hamilton SE; Simmons CG; Kathiriya IS; Corey DR
    Chem Biol; 1999 Jun; 6(6):343-51. PubMed ID: 10375543
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene delivery by a steroid-peptide nucleic acid conjugate.
    Rebuffat AG; Nawrocki AR; Nielsen PE; Bernasconi AG; Bernal-Mendez E; Frey BM; Frey FJ
    FASEB J; 2002 Sep; 16(11):1426-8. PubMed ID: 12205036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates.
    Koppelhus U; Awasthi SK; Zachar V; Holst HU; Ebbesen P; Nielsen PE
    Antisense Nucleic Acid Drug Dev; 2002 Apr; 12(2):51-63. PubMed ID: 12074365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Facile synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates on an automated peptide synthesizer.
    Joshi R; Jha D; Su W; Engelmann J
    J Pept Sci; 2011 Jan; 17(1):8-13. PubMed ID: 20979047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Vitro Cellular Delivery of Peptide Nucleic Acid (PNA).
    Shiraishi T; Ghavami M; Nielsen PE
    Methods Mol Biol; 2020; 2105():173-185. PubMed ID: 32088870
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry.
    Joergensen M; Agerholm-Larsen B; Nielsen PE; Gehl J
    Oligonucleotides; 2011 Feb; 21(1):29-37. PubMed ID: 21235293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peptide nucleic acid-DNA decoy chimeras targeting NF-kappaB transcription factors: Induction of apoptosis in human primary osteoclasts.
    Penolazzi L; Borgatti M; Lambertini E; Mischiati C; Finotti A; Romanelli A; Saviano M; Pedone C; Piva R; Gambari R
    Int J Mol Med; 2004 Aug; 14(2):145-52. PubMed ID: 15254756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The alpha-helical peptide nucleic acid concept: merger of peptide secondary structure and codified nucleic acid recognition.
    Huang Y; Dey S; Zhang X; Sönnichsen F; Garner P
    J Am Chem Soc; 2004 Apr; 126(14):4626-40. PubMed ID: 15070379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular antisense activity of peptide nucleic acid (PNAs) targeted to HIV-1 polypurine tract (PPT) containing RNA.
    Boutimah-Hamoudi F; Leforestier E; Sénamaud-Beaufort C; Nielsen PE; Giovannangeli C; Saison-Behmoaras TE
    Nucleic Acids Res; 2007; 35(12):3907-17. PubMed ID: 17537815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.