These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 24369295)
21. Evaluation of SBRC-gastric and SBRC-intestinal methods for the prediction of in vivo relative lead bioavailability in contaminated soils. Juhasz AL; Weber J; Smith E; Naidu R; Marschner B; Rees M; Rofe A; Kuchel T; Sansom L Environ Sci Technol; 2009 Jun; 43(12):4503-9. PubMed ID: 19603669 [TBL] [Abstract][Full Text] [Related]
22. Transformation and bioaccessibility of lead induced by steamed bread feed in the gastrointestinal tract. Kan J; Sima J; Cao X Ecotoxicol Environ Saf; 2017 Mar; 137():158-164. PubMed ID: 27930968 [TBL] [Abstract][Full Text] [Related]
23. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Ollson CJ; Smith E; Scheckel KG; Betts AR; Juhasz AL J Hazard Mater; 2016 Aug; 313():130-7. PubMed ID: 27060218 [TBL] [Abstract][Full Text] [Related]
24. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments. Subacz JL; Barnett MO; Jardine PM; Stewart MA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1317-29. PubMed ID: 17654151 [TBL] [Abstract][Full Text] [Related]
25. Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils. Li SW; Chang M; Huang X; Li H; Li HB; Ma LQ Chemosphere; 2022 Feb; 288(Pt 3):132655. PubMed ID: 34710465 [TBL] [Abstract][Full Text] [Related]
26. Different effects of vitamin supplementation on arsenic bioaccessibility in contaminated soils using multiple in vitro methods and their relevant mechanisms. Zhou Y; Zhao Y; Xiao P; Wang P; Li Y; Xiong S; Liu X; Wang Y; Cai X; Yin N; Cui Y Ecotoxicol Environ Saf; 2024 Sep; 283():116808. PubMed ID: 39083865 [TBL] [Abstract][Full Text] [Related]
27. Adsorption, sequestration, and bioaccessibility of As(V) in soils. Yang JK; Barnett MO; Jardine PM; Basta NT; Casteel SW Environ Sci Technol; 2002 Nov; 36(21):4562-9. PubMed ID: 12433165 [TBL] [Abstract][Full Text] [Related]
28. Adsorption, oxidation, and bioaccessibility of As(III) in soils. Yang JK; Barnett MO; Zhuang J; Fendorf SE; Jardine PM Environ Sci Technol; 2005 Sep; 39(18):7102-10. PubMed ID: 16201635 [TBL] [Abstract][Full Text] [Related]
29. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils. Li SW; Sun HJ; Li HB; Luo J; Ma LQ Environ Int; 2016 Sep; 94():600-606. PubMed ID: 27346741 [TBL] [Abstract][Full Text] [Related]
30. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E; Naidu R; Weber J; Juhasz AL Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842 [TBL] [Abstract][Full Text] [Related]
31. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2007 Aug; 69(1):69-78. PubMed ID: 17532365 [TBL] [Abstract][Full Text] [Related]
32. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Li J; Wei Y; Zhao L; Zhang J; Shangguan Y; Li F; Hou H Ecotoxicol Environ Saf; 2014 Dec; 110():308-15. PubMed ID: 25437466 [TBL] [Abstract][Full Text] [Related]
33. A comparison of physiologically based extraction test (PBET) and single-extraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils. Li Y; Zhang MK Environ Sci Pollut Res Int; 2013 May; 20(5):3140-8. PubMed ID: 23054795 [TBL] [Abstract][Full Text] [Related]
34. Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Juhasz AL; Weber J; Smith E J Hazard Mater; 2011 Feb; 186(2-3):1870-9. PubMed ID: 21247691 [TBL] [Abstract][Full Text] [Related]
35. Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment. Fazle Bari ASM; Lamb D; Choppala G; Seshadri B; Islam MR; Sanderson P; Rahman MM Ecotoxicol Environ Saf; 2021 Oct; 223():112611. PubMed ID: 34385057 [TBL] [Abstract][Full Text] [Related]
36. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods. Zhou F; Li Y; Ma Y; Peng Q; Cui Z; Liu Y; Wang M; Zhai H; Zhang N; Liang D Sci Total Environ; 2021 Mar; 762():143119. PubMed ID: 33158520 [TBL] [Abstract][Full Text] [Related]
37. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Juhasz AL; Weber J; Naidu R; Gancarz D; Rofe A; Todor D; Smith E Environ Sci Technol; 2010 Jul; 44(13):5240-7. PubMed ID: 20527788 [TBL] [Abstract][Full Text] [Related]
38. Predicting lead relative bioavailability in peri-urban contaminated soils using in vitro bioaccessibility assays. Juhasz AL; Smith E; Weber J; Rees M; Kuchel T; Rofe A; Sansom L; Naidu R J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):604-11. PubMed ID: 23442111 [TBL] [Abstract][Full Text] [Related]
39. Effects of dissolution kinetics on bioaccessible arsenic from tailings and soils. Meunier L; Koch I; Reimer KJ Chemosphere; 2011 Sep; 84(10):1378-85. PubMed ID: 21703661 [TBL] [Abstract][Full Text] [Related]
40. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]