These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24369423)

  • 21. 3C-digital PCR for quantification of chromatin interactions.
    Du M; Wang L
    BMC Mol Biol; 2016 Dec; 17(1):23. PubMed ID: 27923366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale.
    Downes DJ; Beagrie RA; Gosden ME; Telenius J; Carpenter SJ; Nussbaum L; De Ornellas S; Sergeant M; Eijsbouts CQ; Schwessinger R; Kerry J; Roberts N; Shivalingam A; El-Sagheer A; Oudelaar AM; Brown T; Buckle VJ; Davies JOJ; Hughes JR
    Nat Commun; 2021 Jan; 12(1):531. PubMed ID: 33483495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidics-Based Chromosome Conformation Capture (3C) Technology for Examining Chromatin Organization with a Low Quantity of Cells.
    Sun C; Lu C
    Anal Chem; 2018 Mar; 90(6):3714-3719. PubMed ID: 29498513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells.
    Cui S; Kolodziej KE; Obara N; Amaral-Psarris A; Demmers J; Shi L; Engel JD; Grosveld F; Strouboulis J; Tanabe O
    Mol Cell Biol; 2011 Aug; 31(16):3298-311. PubMed ID: 21670149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determining spatial chromatin organization of large genomic regions using 5C technology.
    van Berkum NL; Dekker J
    Methods Mol Biol; 2009; 567():189-213. PubMed ID: 19588094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subtelomeric Chromatin Structure by Chromosome Conformation Capture (3C)-qPCR Methodology in Candida glabrata.
    López-Fuentes E; Hernández-Hernández G; De Las Peñas A; Castaño I
    Methods Mol Biol; 2022; 2542():71-89. PubMed ID: 36008657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erythroid specific activator GATA-1-dependent interactions between CTCF sites around the β-globin locus.
    Kang Y; Kim YW; Kang J; Yun WJ; Kim A
    Biochim Biophys Acta Gene Regul Mech; 2017 Apr; 1860(4):416-426. PubMed ID: 28161276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formaldehyde-assisted isolation of regulatory elements.
    Nagy PL; Price DH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):400-406. PubMed ID: 20046543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9.
    Liu X; Chen Y; Zhang Y; Liu Y; Liu N; Botten GA; Cao H; Orkin SH; Zhang MQ; Xu J
    Genome Biol; 2020 Mar; 21(1):59. PubMed ID: 32138752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic footprinting and sequencing of human beta-globin locus. Tissue specificity and cell line artifact.
    Reddy PM; Stamatoyannopoulos G; Papayannopoulou T; Shen CK
    J Biol Chem; 1994 Mar; 269(11):8287-95. PubMed ID: 8132552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of physical interactions between genomic regions by enChIP-Seq.
    Fujita T; Yuno M; Suzuki Y; Sugano S; Fujii H
    Genes Cells; 2017 Jun; 22(6):506-520. PubMed ID: 28474362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative chromosome conformation capture.
    Nativio R; Ito Y; Murrell A
    Methods Mol Biol; 2012; 925():173-85. PubMed ID: 22907497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin structure of the LCR in the human β-globin locus transcribing the adult δ- and β-globin genes.
    Kim S; Kim YW; Shim SH; Kim CG; Kim A
    Int J Biochem Cell Biol; 2012 Mar; 44(3):505-13. PubMed ID: 22178075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast.
    Chowdhary S; Kainth AS; Gross DS
    Methods; 2020 Jan; 170():4-16. PubMed ID: 31252061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of long range regulatory elements of mouse alpha-globin gene cluster by quantitative associated chromatin trap (QACT).
    Di LJ; Wang L; Zhou GL; Wu XS; Guo ZC; Ke XS; Liu DP; Liang CC
    J Cell Biochem; 2008 Sep; 105(1):301-12. PubMed ID: 18655188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA.
    Simon JM; Giresi PG; Davis IJ; Lieb JD
    Nat Protoc; 2012 Jan; 7(2):256-67. PubMed ID: 22262007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution circular chromosome conformation capture assay.
    Göndör A; Rougier C; Ohlsson R
    Nat Protoc; 2008; 3(2):303-13. PubMed ID: 18274532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosome Conformation Capture (3C) in Budding Yeast.
    Belton JM; Dekker J
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):580-6. PubMed ID: 26034304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upstream distal regulatory elements contact the Lmo2 promoter in mouse erythroid cells.
    Bhattacharya A; Chen CY; Ho S; Mitchell JA
    PLoS One; 2012; 7(12):e52880. PubMed ID: 23285212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Fractional Occupancy of a Tandem Maf Recognition Element and Its Role in Long-Range β-Globin Gene Regulation.
    Stees JR; Hossain MA; Sunose T; Kudo Y; Pardo CE; Nabilsi NH; Darst RP; Poudyal R; Igarashi K; Huang S; Kladde MP; Bungert J
    Mol Cell Biol; 2016 Jan; 36(2):238-50. PubMed ID: 26503787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.