These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24369487)
1. Bifurcations and stability of nondegenerated homoclinic loops for higher dimensional systems. Jin Y; Li F; Xu H; Li J; Zhang L; Ding B Comput Math Methods Med; 2013; 2013():582820. PubMed ID: 24369487 [TBL] [Abstract][Full Text] [Related]
2. Bifurcations of nontwisted heteroclinic loop with resonant eigenvalues. Jin Y; Zhu X; Guo Z; Xu H; Zhang L; Ding B ScientificWorldJournal; 2014; 2014():716082. PubMed ID: 24892076 [TBL] [Abstract][Full Text] [Related]
3. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system. Guo S; Luo ACJ Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254 [TBL] [Abstract][Full Text] [Related]
4. Bifurcations of orbit and inclination flips heteroclinic loop with nonhyperbolic equilibria. Geng F; Zhao J ScientificWorldJournal; 2014; 2014():585609. PubMed ID: 24987740 [TBL] [Abstract][Full Text] [Related]
5. Basic structures of the Shilnikov homoclinic bifurcation scenario. Medrano-T RO; Baptista MS; Caldas IL Chaos; 2005 Sep; 15(3):33112. PubMed ID: 16252986 [TBL] [Abstract][Full Text] [Related]
6. Global bifurcations at the onset of pulse self-replication. Yue B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056209. PubMed ID: 18233741 [TBL] [Abstract][Full Text] [Related]
7. On an origami structure of period-1 motions to homoclinic orbits in the Rössler system. Xing S; Luo ACJ Chaos; 2022 Dec; 32(12):123121. PubMed ID: 36587365 [TBL] [Abstract][Full Text] [Related]
8. Slow passage through a transcritical bifurcation for Hamiltonian systems and the change in action due to a nonhyperbolic homoclinic orbit. Haberman R Chaos; 2000 Sep; 10(3):641-648. PubMed ID: 12779413 [TBL] [Abstract][Full Text] [Related]
9. Homoclinic organization in the Hindmarsh-Rose model: A three parameter study. Barrio R; Ibáñez S; Pérez L Chaos; 2020 May; 30(5):053132. PubMed ID: 32491901 [TBL] [Abstract][Full Text] [Related]
10. Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with Qin BW; Chung KW; Rodríguez-Luis AJ; Belhaq M Chaos; 2018 Sep; 28(9):093107. PubMed ID: 30278647 [TBL] [Abstract][Full Text] [Related]
11. Exact relations between homoclinic and periodic orbit actions in chaotic systems. Li J; Tomsovic S Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081 [TBL] [Abstract][Full Text] [Related]
12. Canard, homoclinic loop, and relaxation oscillations in a Lotka-Volterra system with Allee effect in predator population. Li J; Li S; Wang X Chaos; 2023 Jul; 33(7):. PubMed ID: 37459220 [TBL] [Abstract][Full Text] [Related]
13. Periodic motions and homoclinic orbits in a discontinuous dynamical system on a single domain with multiple vector fields. Guo S; Luo ACJ Chaos; 2022 Mar; 32(3):033132. PubMed ID: 35364824 [TBL] [Abstract][Full Text] [Related]
14. Existence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds. Zhu B; Wei Z; Escalante-González RJ; Kuznetsov NV Chaos; 2020 Dec; 30(12):123143. PubMed ID: 33380050 [TBL] [Abstract][Full Text] [Related]
15. Short-term synaptic plasticity in the deterministic Tsodyks-Markram model leads to unpredictable network dynamics. Cortes JM; Desroches M; Rodrigues S; Veltz R; Muñoz MA; Sejnowski TJ Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16610-5. PubMed ID: 24062464 [TBL] [Abstract][Full Text] [Related]
16. Melnikov analysis of chaos in a simple SIR model with periodically or stochastically modulated nonlinear incidence rate. Shi Y J Biol Dyn; 2020 Dec; 14(1):269-288. PubMed ID: 32281489 [TBL] [Abstract][Full Text] [Related]
17. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Zhang Q; Liu L; Zhang W Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1499-1514. PubMed ID: 29161873 [TBL] [Abstract][Full Text] [Related]
20. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]