These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 24370139)
1. Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation. Huynh HT; Karademir I; Oto A; Suzuki K AJR Am J Roentgenol; 2014 Jan; 202(1):152-9. PubMed ID: 24370139 [TBL] [Abstract][Full Text] [Related]
2. Fully automatic scheme for measuring liver volume in 3D MR images. Le TN; Bao PT; Huynh HT Biomed Mater Eng; 2015; 26 Suppl 1():S1361-9. PubMed ID: 26405897 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms. Suzuki K; Kohlbrenner R; Epstein ML; Obajuluwa AM; Xu J; Hori M Med Phys; 2010 May; 37(5):2159-66. PubMed ID: 20527550 [TBL] [Abstract][Full Text] [Related]
4. Computerized segmentation of liver in hepatic CT and MRI by means of level-set geodesic active contouring. Suzuki K; Huynh HT; Liu Y; Calabrese D; Zhou K; Oto A; Hori M Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2984-7. PubMed ID: 24110354 [TBL] [Abstract][Full Text] [Related]
5. Fully automated MR liver volumetry using watershed segmentation coupled with active contouring. Huynh HT; Le-Trong N; Bao PT; Oto A; Suzuki K Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):235-243. PubMed ID: 27873147 [TBL] [Abstract][Full Text] [Related]
6. Partitioned edge-function-scaled region-based active contour (p-ESRAC): automated liver segmentation in multiphase contrast-enhanced MRI. Oh J; Martin DR; Hu X Med Phys; 2014 Apr; 41(4):041914. PubMed ID: 24694145 [TBL] [Abstract][Full Text] [Related]
7. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics. Gross M; Huber S; Arora S; Ze'evi T; Haider SP; Kucukkaya AS; Iseke S; Kuhn TN; Gebauer B; Michallek F; Dewey M; Vilgrain V; Sartoris R; Ronot M; Jaffe A; Strazzabosco M; Chapiro J; Onofrey JA Eur Radiol; 2024 Aug; 34(8):5056-5065. PubMed ID: 38217704 [TBL] [Abstract][Full Text] [Related]
8. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network. Le TN; Bao PT; Huynh HT Biomed Res Int; 2016; 2016():3219068. PubMed ID: 27597960 [TBL] [Abstract][Full Text] [Related]
9. Quantitative radiology: automated CT liver volumetry compared with interactive volumetry and manual volumetry. Suzuki K; Epstein ML; Kohlbrenner R; Garg S; Hori M; Oto A; Baron RL AJR Am J Roentgenol; 2011 Oct; 197(4):W706-12. PubMed ID: 21940543 [TBL] [Abstract][Full Text] [Related]
10. Malignant lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed. Cui Y; Tan Y; Zhao B; Liberman L; Parbhu R; Kaplan J; Theodoulou M; Hudis C; Schwartz LH Med Phys; 2009 Oct; 36(10):4359-69. PubMed ID: 19928066 [TBL] [Abstract][Full Text] [Related]
11. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914 [TBL] [Abstract][Full Text] [Related]
13. Automated posterior cranial fossa volumetry by MRI: applications to Chiari malformation type I. Bagci AM; Lee SH; Nagornaya N; Green BA; Alperin N AJNR Am J Neuroradiol; 2013 Sep; 34(9):1758-63. PubMed ID: 23493894 [TBL] [Abstract][Full Text] [Related]
14. A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation. Toth R; Tiwari P; Rosen M; Reed G; Kurhanewicz J; Kalyanpur A; Pungavkar S; Madabhushi A Med Image Anal; 2011 Apr; 15(2):214-25. PubMed ID: 21195016 [TBL] [Abstract][Full Text] [Related]
15. Comparison of liver volumetry on contrast-enhanced CT images: one semiautomatic and two automatic approaches. Cai W; He B; Fan Y; Fang C; Jia F J Appl Clin Med Phys; 2016 Nov; 17(6):118-127. PubMed ID: 27929487 [TBL] [Abstract][Full Text] [Related]
16. Comparison of MRI- and CT-based semiautomated liver segmentation: a validation study. Gotra A; Chartrand G; Vu KN; Vandenbroucke-Menu F; Massicotte-Tisluck K; de Guise JA; Tang A Abdom Radiol (NY); 2017 Feb; 42(2):478-489. PubMed ID: 27680014 [TBL] [Abstract][Full Text] [Related]
17. Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT. Yuan Y; Chao M; Sheu RD; Rosenzweig K; Lo YC Med Phys; 2015 Jul; 42(7):4015-26. PubMed ID: 26133602 [TBL] [Abstract][Full Text] [Related]
18. Automated segmentation of the quadratus lumborum muscle from magnetic resonance images using a hybrid atlas based - geodesic active contour scheme. Jurcak V; Fripp J; Engstrom C; Walker D; Salvado O; Ourselin S; Crozier S Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():867-70. PubMed ID: 19162794 [TBL] [Abstract][Full Text] [Related]
19. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla. Fallah F; Machann J; Martirosian P; Bamberg F; Schick F; Yang B MAGMA; 2017 Apr; 30(2):139-151. PubMed ID: 27638089 [TBL] [Abstract][Full Text] [Related]