These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24370259)

  • 21. Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography.
    Ileri N; Faller R; Palazoglu A; Létant SE; Tringe JW; Stroeve P
    Phys Chem Chem Phys; 2013 Jan; 15(3):965-71. PubMed ID: 23211956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore.
    Dong Z; Kennedy E; Hokmabadi M; Timp G
    ACS Nano; 2017 Jun; 11(6):5440-5452. PubMed ID: 28538092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanopore Current Enhancements Lack Protein Charge Dependence and Elucidate Maximum Unfolding at Protein's Isoelectric Point.
    Bandara YMNDY; Farajpour N; Freedman KJ
    J Am Chem Soc; 2022 Feb; 144(7):3063-3073. PubMed ID: 35143193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.
    Di Marino D; Bonome EL; Tramontano A; Chinappi M
    J Phys Chem Lett; 2015 Aug; 6(15):2963-8. PubMed ID: 26267189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential protein unfolding through a carbon nanotube pore.
    Xu Z; Zhang S; Weber JK; Luan B; Zhou R; Li J
    Nanoscale; 2016 Jun; 8(24):12143-51. PubMed ID: 26899409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multistep protein unfolding during nanopore translocation.
    Rodriguez-Larrea D; Bayley H
    Nat Nanotechnol; 2013 Apr; 8(4):288-95. PubMed ID: 23474543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical, thermal, and electric field induced unfolding of single protein molecules studied using nanopores.
    Freedman KJ; Jürgens M; Prabhu A; Ahn CW; Jemth P; Edel JB; Kim MJ
    Anal Chem; 2011 Jul; 83(13):5137-44. PubMed ID: 21598904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SDS-assisted protein transport through solid-state nanopores.
    Restrepo-Pérez L; John S; Aksimentiev A; Joo C; Dekker C
    Nanoscale; 2017 Aug; 9(32):11685-11693. PubMed ID: 28776058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical-induced unfolding of cofactor-free protein monitored by electrochemistry.
    Guo LH; Qu N
    Anal Chem; 2006 Sep; 78(17):6275-8. PubMed ID: 16944913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA sequence-dependent ionic currents in ultra-small solid-state nanopores.
    Comer J; Aksimentiev A
    Nanoscale; 2016 May; 8(18):9600-13. PubMed ID: 27103233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-enabled detection of ibuprofen and sulfamethoxazole using solid-state nanopores.
    Xia Z; Lin CY; Drndić M
    Proteomics; 2022 Mar; 22(5-6):e2100071. PubMed ID: 34974637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of a solid-state nanopore for profiling the transferrin receptor protein and distinguishing between transferrin receptor and its ligand protein.
    O'Donohue M; Saharia J; Bandara N; Alexandrakis G; Kim MJ
    Electrophoresis; 2023 Jan; 44(1-2):349-359. PubMed ID: 36401829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single protein molecule detection by glass nanopores.
    Li W; Bell NA; Hernández-Ainsa S; Thacker VV; Thackray AM; Bujdoso R; Keyser UF
    ACS Nano; 2013 May; 7(5):4129-34. PubMed ID: 23607870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How Nanopore Translocation Experiments Can Measure RNA Unfolding.
    Bandarkar P; Yang H; Henley RY; Wanunu M; Whitford PC
    Biophys J; 2020 Apr; 118(7):1612-1620. PubMed ID: 32075749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of Nanoscale
    Hughes MDG; Hanson BS; Cussons S; Mahmoudi N; Brockwell DJ; Dougan L
    ACS Nano; 2021 Jul; 15(7):11296-11308. PubMed ID: 34214394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influences of urea and pH on the interaction of cinchonidine with bovine serum albumin by steady state fluorescence spectroscopy.
    Zhang T; Li D
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():15-20. PubMed ID: 23651774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining time-resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin-curcumin complex during unfolding and refolding processes.
    Barakat C; Patra D
    Luminescence; 2013; 28(2):149-55. PubMed ID: 22311564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aggregation features of partially unfolded bovine serum albumin modulated by hydrogenated and fluorinated surfactants: Molecular dynamics insights and experimental approaches.
    Scanavachi G; Espinosa YR; Yoneda JS; Rial R; Ruso JM; Itri R
    J Colloid Interface Sci; 2020 Jul; 572():9-21. PubMed ID: 32222605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore.
    Liu Q; Wu H; Wu L; Xie X; Kong J; Ye X; Liu L
    PLoS One; 2012; 7(9):e46014. PubMed ID: 23029365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffusion of Proteins across Silica Colloidal Crystals.
    Ignacio-de Leon PAA; Eygeris Y; Haynes R; Zharov I
    Langmuir; 2018 Sep; 34(35):10333-10339. PubMed ID: 30086633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.