These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 24370400)
1. Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy. Borer P; Hug SJ J Colloid Interface Sci; 2014 Feb; 416():44-53. PubMed ID: 24370400 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles. Mäkie P; Persson P; Österlund L J Colloid Interface Sci; 2013 Feb; 392():349-358. PubMed ID: 23142013 [TBL] [Abstract][Full Text] [Related]
3. Distinct effects of oxalate versus malonate on the iron redox chemistry: Implications for the photo-Fenton reaction. Xiao D; Guo Y; Lou X; Fang C; Wang Z; Liu J Chemosphere; 2014 May; 103():354-8. PubMed ID: 24359921 [TBL] [Abstract][Full Text] [Related]
4. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Nieto-Juarez JI; Kohn T Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031 [TBL] [Abstract][Full Text] [Related]
5. Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides. Huang JH; Elzinga EJ; Brechbuehl Y; Voegelin A; Kretzschmar R Environ Sci Technol; 2011 Apr; 45(7):2804-10. PubMed ID: 21375285 [TBL] [Abstract][Full Text] [Related]
6. Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions. Shuai W; Gu C; Fang G; Zhou D; Gao J J Environ Sci (China); 2019 Jun; 80():5-13. PubMed ID: 30952352 [TBL] [Abstract][Full Text] [Related]
7. ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces. Cagnasso M; Boero V; Franchini MA; Chorover J Colloids Surf B Biointerfaces; 2010 Apr; 76(2):456-67. PubMed ID: 20074916 [TBL] [Abstract][Full Text] [Related]
8. Insights into sunlight-driven transformation of tetracycline by iron (hydr)oxides: The dominating role of self-generated hydrogen peroxide. Li S; Pang J; Han W; Chang T; Luo L; Li X; Liu J; Cheng H Water Res; 2024 Jul; 258():121800. PubMed ID: 38796909 [TBL] [Abstract][Full Text] [Related]
9. ATR-FTIR spectroscopic evidence for biomolecular phosphorus and carboxyl groups facilitating bacterial adhesion to iron oxides. Parikh SJ; Mukome FN; Zhang X Colloids Surf B Biointerfaces; 2014 Jul; 119():38-46. PubMed ID: 24859052 [TBL] [Abstract][Full Text] [Related]
10. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption. Latta DE; Bachman JE; Scherer MM Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051 [TBL] [Abstract][Full Text] [Related]
11. Photochemical behavior of ferrihydrite-oxalate system: Interfacial reaction mechanism and charge transfer process. Xu T; Zhu R; Shang H; Xia Y; Liu X; Zhang L Water Res; 2019 Aug; 159():10-19. PubMed ID: 31075500 [TBL] [Abstract][Full Text] [Related]
12. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Zhang Z; Yin N; Du H; Cai X; Cui Y Chemosphere; 2016 May; 151():108-15. PubMed ID: 26933901 [TBL] [Abstract][Full Text] [Related]
13. Atomistic simulations of uranium incorporation into iron (hydr)oxides. Kerisit S; Felmy AR; Ilton ES Environ Sci Technol; 2011 Apr; 45(7):2770-6. PubMed ID: 21391633 [TBL] [Abstract][Full Text] [Related]
14. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment. Zhao C; Arroyo-Mora LE; DeCaprio AP; Sharma VK; Dionysiou DD; O'Shea KE Water Res; 2014 Dec; 67():144-53. PubMed ID: 25269106 [TBL] [Abstract][Full Text] [Related]
15. Controls on Fe(II)-activated trace element release from goethite and hematite. Frierdich AJ; Catalano JG Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654 [TBL] [Abstract][Full Text] [Related]
16. The critical role of the surface iron-oxalate complexing species in determining photochemical degradation of norfloxacin using different iron oxides. Huang M; Xiang W; Zhou T; Mao J; Wu X; Guo X Sci Total Environ; 2019 Dec; 697():134220. PubMed ID: 32380635 [TBL] [Abstract][Full Text] [Related]
17. Influence of mineral characteristics on the retention of low molecular weight organic compounds: a batch sorption-desorption and ATR-FTIR study. Yeasmin S; Singh B; Kookana RS; Farrell M; Sparks DL; Johnston CT J Colloid Interface Sci; 2014 Oct; 432():246-57. PubMed ID: 25086719 [TBL] [Abstract][Full Text] [Related]
18. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading. Han J; Ro HM Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Jeon BH; Dempsey BA; Burgos WD Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975 [TBL] [Abstract][Full Text] [Related]
20. Photodissolution of ferrihydrite in the presence of oxalic acid: an in situ ATR-FTIR/DFT study. Bhandari N; Hausner DB; Kubicki JD; Strongin DR Langmuir; 2010 Nov; 26(21):16246-53. PubMed ID: 20973577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]