These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 24370405)
1. Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors. Sun H; Pan L; Piao X; Sun Z J Colloid Interface Sci; 2014 Feb; 416():81-5. PubMed ID: 24370405 [TBL] [Abstract][Full Text] [Related]
2. Long afterglow Sr4Al14O25:Eu,Dy phosphors as both scattering and down converting layer for CdS quantum dot-sensitized solar cells. Sun H; Pan L; Zhu G; Piao X; Zhang L; Sun Z Dalton Trans; 2014 Oct; 43(40):14936-41. PubMed ID: 25252128 [TBL] [Abstract][Full Text] [Related]
3. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor. Kim D; Kim HE; Kim CH PLoS One; 2016; 11(1):e0145434. PubMed ID: 26731086 [TBL] [Abstract][Full Text] [Related]
4. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot. Chen J; Lei W; Deng WQ Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215 [TBL] [Abstract][Full Text] [Related]
5. [Study on self-propagating synthesis of the doped SrAl2O4 rare earth long afterglow phosphors]. Li Y; Zhao YL; Liu YG; Wei XY; Ren Y Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1467-71. PubMed ID: 21847911 [TBL] [Abstract][Full Text] [Related]
6. Effect of UV irradiation on different types of luminescence of SrAl Jha P Luminescence; 2016 Nov; 31(7):1302-1305. PubMed ID: 26919481 [TBL] [Abstract][Full Text] [Related]
7. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode. Jiang L; You T; Deng WQ Nanotechnology; 2013 Oct; 24(41):415401. PubMed ID: 24045808 [TBL] [Abstract][Full Text] [Related]
8. Y3Al5O12:Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells. Zhu G; Wang X; Li H; Pan L; Sun H; Liu X; Lv T; Sun Z Chem Commun (Camb); 2012 Jan; 48(7):958-60. PubMed ID: 22113365 [TBL] [Abstract][Full Text] [Related]
9. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826 [TBL] [Abstract][Full Text] [Related]
10. A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ Dalton Trans; 2015 Jan; 44(2):630-8. PubMed ID: 25381887 [TBL] [Abstract][Full Text] [Related]
11. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411 [TBL] [Abstract][Full Text] [Related]
12. Ag nanoparticles significantly improve the slow decay brightness of SrAl Hai O; Pei M; Ren Q; Wu X; Yang E; Xu D; Zhu J Dalton Trans; 2022 Feb; 51(6):2287-2295. PubMed ID: 35040842 [TBL] [Abstract][Full Text] [Related]
13. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb(3+), Er(3+)-incorporated nanocrystalline TiO2 electrodes. Zhu G; Wang H; Zhang Q; Zhang L J Colloid Interface Sci; 2015 Aug; 451():15-20. PubMed ID: 25875488 [TBL] [Abstract][Full Text] [Related]
14. Copper-indium-selenide quantum dot-sensitized solar cells. Yang J; Kim JY; Yu JH; Ahn TY; Lee H; Choi TS; Kim YW; Joo J; Ko MJ; Hyeon T Phys Chem Chem Phys; 2013 Dec; 15(47):20517-25. PubMed ID: 24177572 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells. Feng HL; Wu WQ; Rao HS; Wan Q; Li LB; Kuang DB; Su CY ACS Appl Mater Interfaces; 2015 Mar; 7(9):5199-205. PubMed ID: 25679232 [TBL] [Abstract][Full Text] [Related]
16. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. Yu XY; Liao JY; Qiu KQ; Kuang DB; Su CY ACS Nano; 2011 Dec; 5(12):9494-500. PubMed ID: 22032641 [TBL] [Abstract][Full Text] [Related]
17. Enhanced visible light catalysis activity of CdS-sheathed SrAl Xiao Y; Luo B; Cheng B; Huang Q; Ye Y; Fang L; Zhou L; Lei S Dalton Trans; 2018 Jun; 47(24):7941-7948. PubMed ID: 29808875 [TBL] [Abstract][Full Text] [Related]
18. High-efficiency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles. Cheng HM; Huang KY; Lee KM; Yu P; Lin SC; Huang JH; Wu CG; Tang J Phys Chem Chem Phys; 2012 Oct; 14(39):13539-48. PubMed ID: 22825982 [TBL] [Abstract][Full Text] [Related]
19. Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO₂ nanotube arrays. Guan XF; Huang SQ; Zhang QX; Shen X; Sun HC; Li DM; Luo YH; Yu RC; Meng QB Nanotechnology; 2011 Nov; 22(46):465402. PubMed ID: 22024771 [TBL] [Abstract][Full Text] [Related]
20. Combustion synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+, Tb3+ phosphor. Song H; Chen D Luminescence; 2007; 22(6):554-8. PubMed ID: 17768712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]