These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24370418)

  • 1. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Feb; 416():172-6. PubMed ID: 24370418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. YbCl₃ electrode in alkaline aqueous electrolyte with high pseudocapacitance.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Jun; 424():84-9. PubMed ID: 24767502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of electroactive colloids via in situ coprecipitation under electric field: erbium chloride alkaline aqueous pseudocapacitor.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Sep; 430():265-71. PubMed ID: 24973700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colloidal pseudocapacitor: direct use of Fe(NO₃)₃ in electrode can lead to a high performance alkaline supercapacitor system.
    Chen X; Chen K; Wang H; Xue D
    J Colloid Interface Sci; 2015 Apr; 444():49-57. PubMed ID: 25585287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors.
    Ji X; Xu K; Chen C; Zhang B; Ruan Y; Liu J; Miao L; Jiang J
    Phys Chem Chem Phys; 2016 Feb; 18(6):4460-7. PubMed ID: 26790481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ electrochemical activation of Ni-based colloids from an NiCl
    Chen K; Xue D
    Nanoscale; 2016 Oct; 8(39):17090-17095. PubMed ID: 27722673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors.
    Qiu Y; Zhao Y; Yang X; Li W; Wei Z; Xiao J; Leung SF; Lin Q; Wu H; Zhang Y; Fan Z; Yang S
    Nanoscale; 2014 Apr; 6(7):3626-31. PubMed ID: 24562413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6.
    Chen K; Liu F; Xue D; Komarneni S
    Nanoscale; 2015 Jan; 7(2):432-9. PubMed ID: 25412769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials.
    Li HB; Yu MH; Wang FX; Liu P; Liang Y; Xiao J; Wang CX; Tong YX; Yang GW
    Nat Commun; 2013; 4():1894. PubMed ID: 23695688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh capacitive performance from both Co(OH)₂/graphene electrode and K₃Fe(CN)₆ electrolyte.
    Zhao C; Zheng W; Wang X; Zhang H; Cui X; Wang H
    Sci Rep; 2013 Oct; 3():2986. PubMed ID: 24136136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO₂.
    Chen K; Xue D
    J Colloid Interface Sci; 2015 May; 446():77-83. PubMed ID: 25660707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance.
    Mai LQ; Minhas-Khan A; Tian X; Hercule KM; Zhao YL; Lin X; Xu X
    Nat Commun; 2013; 4():2923. PubMed ID: 24327172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors.
    Li W; Xin L; Xu X; Liu Q; Zhang M; Ding S; Zhao M; Lou X
    Sci Rep; 2015 Mar; 5():9277. PubMed ID: 25787769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide.
    Zhu M; Meng W; Huang Y; Huang Y; Zhi C
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18901-10. PubMed ID: 25280251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoporous slit-structured NiO for high-performance pseudocapacitors.
    Yang M; Li JX; Li HH; Su LW; Wei JP; Zhou Z
    Phys Chem Chem Phys; 2012 Aug; 14(31):11048-52. PubMed ID: 22777157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials.
    Wang H; Casalongue HS; Liang Y; Dai H
    J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.