These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 24370418)
21. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Wang D; Wang Q; Wang T Inorg Chem; 2011 Jul; 50(14):6482-92. PubMed ID: 21671652 [TBL] [Abstract][Full Text] [Related]
22. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. Tang CH; Yin X; Gong H ACS Appl Mater Interfaces; 2013 Nov; 5(21):10574-82. PubMed ID: 24090480 [TBL] [Abstract][Full Text] [Related]
23. Capacitance Performance of Nanostructured CoNi Ai Z; Hu Z; Liu Y; Yao M Chempluschem; 2016 Mar; 81(3):322-328. PubMed ID: 31968788 [TBL] [Abstract][Full Text] [Related]
24. Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. Liu X; Shi C; Zhai C; Cheng M; Liu Q; Wang G ACS Appl Mater Interfaces; 2016 Feb; 8(7):4585-91. PubMed ID: 26829547 [TBL] [Abstract][Full Text] [Related]
25. A binary A(x)B(1-x) ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation. Chen K; Yin S; Xue D Nanoscale; 2015 Jan; 7(3):1161-6. PubMed ID: 25486527 [TBL] [Abstract][Full Text] [Related]
26. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Hercule KM; Wei Q; Khan AM; Zhao Y; Tian X; Mai L Nano Lett; 2013; 13(11):5685-91. PubMed ID: 24147641 [TBL] [Abstract][Full Text] [Related]
27. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. Sellam ; Hashmi SA ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059 [TBL] [Abstract][Full Text] [Related]
28. Capacitive energy storage in nanostructured carbon-electrolyte systems. Simon P; Gogotsi Y Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843 [TBL] [Abstract][Full Text] [Related]
29. Enhancing Capacitance of Nickel Cobalt Chalcogenide via Interface Structural Design. Lu F; Zhou M; Su K; Ye T; Yang Y; Lam TD; Bando Y; Wang X ACS Appl Mater Interfaces; 2019 Jan; 11(2):2082-2092. PubMed ID: 30571918 [TBL] [Abstract][Full Text] [Related]
31. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. Hu L; Chen W; Xie X; Liu N; Yang Y; Wu H; Yao Y; Pasta M; Alshareef HN; Cui Y ACS Nano; 2011 Nov; 5(11):8904-13. PubMed ID: 21923135 [TBL] [Abstract][Full Text] [Related]
32. Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chen S; Duan J; Tang Y; Zhang Qiao S Chemistry; 2013 May; 19(22):7118-24. PubMed ID: 23553792 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. Liu R; Duay J; Lane T; Bok Lee S Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700 [TBL] [Abstract][Full Text] [Related]
35. Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Gao Y; Lin Y; Peng Z; Zhou Q; Fan Z Nanoscale; 2017 Nov; 9(46):18311-18317. PubMed ID: 29143057 [TBL] [Abstract][Full Text] [Related]
36. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. Sassin MB; Mansour AN; Pettigrew KA; Rolison DR; Long JW ACS Nano; 2010 Aug; 4(8):4505-14. PubMed ID: 20731433 [TBL] [Abstract][Full Text] [Related]
37. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application. Li Y; Roy S; Ben T; Xu S; Qiu S Phys Chem Chem Phys; 2014 Jul; 16(25):12909-17. PubMed ID: 24850432 [TBL] [Abstract][Full Text] [Related]
38. Interlayer engineering of Ti Hu M; Cheng R; Li Z; Hu T; Zhang H; Shi C; Yang J; Cui C; Zhang C; Wang H; Fan B; Wang X; Yang QH Nanoscale; 2020 Jan; 12(2):763-771. PubMed ID: 31830197 [TBL] [Abstract][Full Text] [Related]
39. Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage. Kayali E; VahidMohammadi A; Orangi J; Beidaghi M ACS Appl Mater Interfaces; 2018 Aug; 10(31):25949-25954. PubMed ID: 30044609 [TBL] [Abstract][Full Text] [Related]
40. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Ling T; Da P; Zheng X; Ge B; Hu Z; Wu M; Du XW; Hu WB; Jaroniec M; Qiao SZ Sci Adv; 2018 Oct; 4(10):eaau6261. PubMed ID: 30345366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]