BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

689 related articles for article (PubMed ID: 24370566)

  • 1. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status.
    Klammer H; Mladenov E; Li F; Iliakis G
    Cancer Lett; 2015 Jan; 356(1):58-71. PubMed ID: 24370566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercellular communication of DNA damage and oxidative status underpin bystander effects.
    Mladenov E; Li F; Zhang L; Klammer H; Iliakis G
    Int J Radiat Biol; 2018 Aug; 94(8):719-726. PubMed ID: 29377786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of oxidative DNA damage in radiation induced bystander effect.
    Havaki S; Kotsinas A; Chronopoulos E; Kletsas D; Georgakilas A; Gorgoulis VG
    Cancer Lett; 2015 Jan; 356(1):43-51. PubMed ID: 24530228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].
    Wideł M; Przybyszewski W; Rzeszowska-Wolny J
    Postepy Hig Med Dosw (Online); 2009 Aug; 63():377-88. PubMed ID: 19724078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy.
    Rzeszowska-Wolny J; Przybyszewski WM; Widel M
    Eur J Pharmacol; 2009 Dec; 625(1-3):156-64. PubMed ID: 19835860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nitric oxide in the radiation-induced bystander effect.
    Yakovlev VA
    Redox Biol; 2015 Dec; 6():396-400. PubMed ID: 26355395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo.
    Mancuso M; Pasquali E; Leonardi S; Rebessi S; Tanori M; Giardullo P; Borra F; Pazzaglia S; Naus CC; Di Majo V; Saran A
    Oncogene; 2011 Nov; 30(45):4601-8. PubMed ID: 21602884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular radiation effects and the bystander response.
    Little JB
    Mutat Res; 2006 May; 597(1-2):113-8. PubMed ID: 16413041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect.
    Azzam EI; de Toledo SM; Little JB
    Oncogene; 2003 Oct; 22(45):7050-7. PubMed ID: 14557810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bystander normal human fibroblasts reduce damage response in radiation targeted cancer cells through intercellular ROS level modulation.
    Widel M; Przybyszewski WM; Cieslar-Pobuda A; Saenko YV; Rzeszowska-Wolny J
    Mutat Res; 2012 Mar; 731(1-2):117-24. PubMed ID: 22210495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complex interactions between radiation induced non-targeted effects and cancer.
    Campa A; Balduzzi M; Dini V; Esposito G; Tabocchini MA
    Cancer Lett; 2015 Jan; 356(1):126-36. PubMed ID: 24139968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.
    de Toledo SM; Buonanno M; Harris AL; Azzam EI
    Int J Radiat Biol; 2017 Oct; 93(10):1182-1194. PubMed ID: 28565963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects.
    Morgan WF; Sowa MB
    Cancer Lett; 2015 Jan; 356(1):17-21. PubMed ID: 24041870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology.
    Hatzi VI; Laskaratou DA; Mavragani IV; Nikitaki Z; Mangelis A; Panayiotidis MI; Pantelias GE; Terzoudi GI; Georgakilas AG
    Cancer Lett; 2015 Jan; 356(1):34-42. PubMed ID: 24333869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionizing radiation and leukaemia: more questions than answers.
    Wright EG
    Hematol Oncol; 2005; 23(3-4):119-26. PubMed ID: 16342297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Najafi M; Villa V
    Curr Radiopharm; 2018; 11(1):34-45. PubMed ID: 29284398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bystander effect: biological endpoints and microarray analysis.
    Chaudhry MA
    Mutat Res; 2006 May; 597(1-2):98-112. PubMed ID: 16414093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.
    Autsavapromporn N; Plante I; Liu C; Konishi T; Usami N; Funayama T; Azzam EI; Murakami T; Suzuki M
    Int J Radiat Biol; 2015 Jan; 91(1):62-70. PubMed ID: 25084840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes.
    Tian W; Yin X; Wang L; Wang J; Zhu W; Cao J; Yang H
    Mutat Res; 2015 Oct; 780():77-85. PubMed ID: 26302379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bystander effects: intercellular transmission of radiation damage signals.
    Little JB; Azzam EI; de Toledo SM; Nagasawa H
    Radiat Prot Dosimetry; 2002; 99(1-4):159-62. PubMed ID: 12194273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.