BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24370655)

  • 1. Heparan sulfate as a regulator of endochondral ossification and osteochondroma development.
    Jochmann K; Bachvarova V; Vortkamp A
    Matrix Biol; 2014 Feb; 34():55-63. PubMed ID: 24370655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprint of: Heparan sulfate as a regulator of endochondral ossification and osteochondroma development.
    Jochmann K; Bachvarova V; Vortkamp A
    Matrix Biol; 2014 Apr; 35():239-47. PubMed ID: 24726293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification.
    Koziel L; Kunath M; Kelly OG; Vortkamp A
    Dev Cell; 2004 Jun; 6(6):801-13. PubMed ID: 15177029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EXT1 regulates chondrocyte proliferation and differentiation during endochondral bone development.
    Hilton MJ; Gutiérrez L; Martinez DA; Wells DE
    Bone; 2005 Mar; 36(3):379-86. PubMed ID: 15777636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes.
    Hecht JT; Hayes E; Haynes R; Cole WG; Long RJ; Farach-Carson MC; Carson DD
    Differentiation; 2005 Jun; 73(5):212-21. PubMed ID: 16026543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic expression of the EXT2 gene in developing chondrocytes enhances the synthesis of heparan sulfate and bone formation in mice.
    Morimoto K; Shimizu T; Furukawa K; Morio H; Kurosawa H; Shirasawa T
    Biochem Biophys Res Commun; 2002 Apr; 292(4):999-1009. PubMed ID: 11944914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling systems affecting the severity of multiple osteochondromas.
    Piombo V; Jochmann K; Hoffmann D; Wuelling M; Vortkamp A
    Bone; 2018 Jun; 111():71-81. PubMed ID: 29545125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Of hedgehogs and hereditary bone tumors: re-examination of the pathogenesis of osteochondromas.
    Jones KB; Morcuende JA
    Iowa Orthop J; 2003; 23():87-95. PubMed ID: 14575257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses.
    Pacifici M
    Matrix Biol; 2018 Oct; 71-72():28-39. PubMed ID: 29277722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered heparan sulfate structure in Glce(-/-) mice leads to increased Hedgehog signaling in endochondral bones.
    Dierker T; Bachvarova V; Krause Y; Li JP; Kjellén L; Seidler DG; Vortkamp A
    Matrix Biol; 2016 Jan; 49():82-92. PubMed ID: 26116392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of growth factors regulating chondrocyte differentiation in the developing embryo.
    Vortkamp A
    Osteoarthritis Cartilage; 2001; 9 Suppl A():S109-17. PubMed ID: 11680674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsuspected osteochondroma-like outgrowths in the cranial base of Hereditary Multiple Exostoses patients and modeling and treatment with a BMP antagonist in mice.
    Sinha S; Mundy C; Bechtold T; Sgariglia F; Ibrahim MM; Billings PC; Carroll K; Koyama E; Jones KB; Pacifici M
    PLoS Genet; 2017 Apr; 13(4):e1006742. PubMed ID: 28445472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteochondroma formation is independent of heparanase expression as revealed in a mouse model of hereditary multiple exostoses.
    Mundy C; Chung J; Koyama E; Bunting S; Mahimkar R; Pacifici M
    J Orthop Res; 2022 Oct; 40(10):2391-2401. PubMed ID: 34996123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparan sulfate deficiency leads to hypertrophic chondrocytes by increasing bone morphogenetic protein signaling.
    Kawashima K; Ogawa H; Komura S; Ishihara T; Yamaguchi Y; Akiyama H; Matsumoto K
    Osteoarthritis Cartilage; 2020 Nov; 28(11):1459-1470. PubMed ID: 32818603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondrocytes respond to an altered heparan sulfate composition with distinct changes of heparan sulfate structure and increased levels of chondroitin sulfate.
    Bachvarova V; Dierker T; Esko J; Hoffmann D; Kjellen L; Vortkamp A
    Matrix Biol; 2020 Nov; 93():43-59. PubMed ID: 32201365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament.
    Sugita D; Yayama T; Uchida K; Kokubo Y; Nakajima H; Yamagishi A; Takeura N; Baba H
    Spine (Phila Pa 1976); 2013 Oct; 38(22):E1388-96. PubMed ID: 23883825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.
    Sgariglia F; Candela ME; Huegel J; Jacenko O; Koyama E; Yamaguchi Y; Pacifici M; Enomoto-Iwamoto M
    Bone; 2013 Nov; 57(1):220-31. PubMed ID: 23958822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrocyte proliferation and differentiation.
    Wuelling M; Vortkamp A
    Endocr Dev; 2011; 21():1-11. PubMed ID: 21865749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation.
    Fisher MC; Li Y; Seghatoleslami MR; Dealy CN; Kosher RA
    Matrix Biol; 2006 Jan; 25(1):27-39. PubMed ID: 16226436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mice deficient in Ext2 lack heparan sulfate and develop exostoses.
    Stickens D; Zak BM; Rougier N; Esko JD; Werb Z
    Development; 2005 Nov; 132(22):5055-68. PubMed ID: 16236767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.