These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 24370695)
21. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Mondal P; Majumder CB; Mohanty B J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333 [TBL] [Abstract][Full Text] [Related]
22. Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water. Patra AK; Dutta A; Bhaumik A J Hazard Mater; 2012 Jan; 201-202():170-7. PubMed ID: 22169241 [TBL] [Abstract][Full Text] [Related]
23. Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. Chen R; Zhi C; Yang H; Bando Y; Zhang Z; Sugiur N; Golberg D J Colloid Interface Sci; 2011 Jul; 359(1):261-8. PubMed ID: 21507418 [TBL] [Abstract][Full Text] [Related]
24. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Yadanaparthi SK; Graybill D; von Wandruszka R J Hazard Mater; 2009 Nov; 171(1-3):1-15. PubMed ID: 19540667 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal process from drinking water. Iesan CM; Capat C; Ruta F; Udrea I Water Res; 2008 Oct; 42(16):4327-33. PubMed ID: 18778845 [TBL] [Abstract][Full Text] [Related]
26. Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides. Jeong Y; Fan M; Van Leeuwen J; Belczyk JF J Environ Sci (China); 2007; 19(8):910-9. PubMed ID: 17966846 [TBL] [Abstract][Full Text] [Related]
27. Aquatic arsenic: toxicity, speciation, transformations, and remediation. Sharma VK; Sohn M Environ Int; 2009 May; 35(4):743-59. PubMed ID: 19232730 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of novel hierarchical micro/nanostructures AlOOH/AlFe and their application for As(V) removal. Svarovskaya N; Bakina O; Glazkova E; Rodkevich N; Lerner M; Vornakova E; Chzhou V; Naumova L Environ Sci Pollut Res Int; 2022 Jan; 29(1):1246-1258. PubMed ID: 34355309 [TBL] [Abstract][Full Text] [Related]
29. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Gupta A; Yunus M; Sankararamakrishnan N Chemosphere; 2012 Jan; 86(2):150-5. PubMed ID: 22079302 [TBL] [Abstract][Full Text] [Related]
30. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Zhang QL; Lin YC; Chen X; Gao NY J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260 [TBL] [Abstract][Full Text] [Related]
31. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Chen CY; Chang TH; Kuo JT; Chen YF; Chung YC Bioresour Technol; 2008 Nov; 99(16):7487-94. PubMed ID: 18359225 [TBL] [Abstract][Full Text] [Related]
32. Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water. Andjelkovic I; Jovic B; Jovic M; Markovic M; Stankovic D; Manojlovic D; Roglic G Environ Sci Pollut Res Int; 2016 Jan; 23(1):469-76. PubMed ID: 26310708 [TBL] [Abstract][Full Text] [Related]
33. Quantifying effects of pH and surface loading on arsenic adsorption on NanoActive alumina using a speciation-based model. Guan XH; Su T; Wang J J Hazard Mater; 2009 Jul; 166(1):39-45. PubMed ID: 19095352 [TBL] [Abstract][Full Text] [Related]
34. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Chen Y; Su Y; Zheng X; Chen H; Yang H Water Res; 2012 Sep; 46(14):4379-86. PubMed ID: 22704928 [TBL] [Abstract][Full Text] [Related]
35. A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal. Zeng L Water Res; 2003 Nov; 37(18):4351-8. PubMed ID: 14511705 [TBL] [Abstract][Full Text] [Related]
36. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh. van Halem D; Olivero S; de Vet WW; Verberk JQ; Amy GL; van Dijk JC Water Res; 2010 Nov; 44(19):5761-9. PubMed ID: 20573366 [TBL] [Abstract][Full Text] [Related]
37. [Factors affecting arsenic removal with copolymer coagulant and their mechanism]. Yuan T; Luo Q Wei Sheng Yan Jiu; 2001 May; 30(3):152-4. PubMed ID: 12525086 [TBL] [Abstract][Full Text] [Related]
38. Comparison of treated laterite as arsenic adsorbent from different locations and performance of best filter under field conditions. Maiti A; Thakur BK; Basu JK; De S J Hazard Mater; 2013 Nov; 262():1176-86. PubMed ID: 22785008 [TBL] [Abstract][Full Text] [Related]
39. Remediation of arsenic from contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological evaluation in Mytilus galloprovincialis. Coppola F; Tavares DS; Henriques B; Monteiro R; Trindade T; Soares AMVM; Figueira E; Polese G; Pereira E; Freitas R Environ Res; 2019 Aug; 175():200-212. PubMed ID: 31136952 [TBL] [Abstract][Full Text] [Related]
40. Arsenic removal by iron oxide coated sponge: treatment and waste management. Nguyen TV; Rahman A; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen DT; Do TA; Nguyen TK Water Sci Technol; 2009; 60(6):1489-95. PubMed ID: 19759451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]