BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 24370699)

  • 1. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release.
    Tabelin CB; Hashimoto A; Igarashi T; Yoneda T
    Sci Total Environ; 2014 Mar; 473-474():244-53. PubMed ID: 24370699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short and long term release mechanisms of arsenic, selenium and boron from a tunnel-excavated sedimentary rock under in situ conditions.
    Tamoto S; Tabelin CB; Igarashi T; Ito M; Hiroyoshi N
    J Contam Hydrol; 2015; 175-176():60-71. PubMed ID: 25747140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaching of boron, arsenic and selenium from sedimentary rocks: I. Effects of contact time, mixing speed and liquid-to-solid ratio.
    Tabelin CB; Hashimoto A; Igarashi T; Yoneda T
    Sci Total Environ; 2014 Feb; 472():620-9. PubMed ID: 24317116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: I. Column experiments under intermittent and unsaturated flow.
    Tabelin CB; Sasaki R; Igarashi T; Park I; Tamoto S; Arima T; Ito M; Hiroyoshi N
    Chemosphere; 2017 Nov; 186():558-569. PubMed ID: 28810224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: II. Kinetic and reactive transport modeling.
    Tabelin CB; Sasaki R; Igarashi T; Park I; Tamoto S; Arima T; Ito M; Hiroyoshi N
    Chemosphere; 2017 Dec; 188():444-454. PubMed ID: 28892774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano.
    Ormachea Muñoz M; Wern H; Johnsson F; Bhattacharya P; Sracek O; Thunvik R; Quintanilla J; Bundschuh J
    J Hazard Mater; 2013 Nov; 262():924-40. PubMed ID: 24091126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of arsenic and lead release from hydrothermally altered rock.
    Tabelin CB; Igarashi T
    J Hazard Mater; 2009 Sep; 169(1-3):980-90. PubMed ID: 19443109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of potential arsenic leaching from its phases in excavated sedimentary and metamorphic rocks.
    Suzuki S; Katoh M
    Environ Geochem Health; 2020 Feb; 42(2):407-418. PubMed ID: 31300943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.
    Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD
    Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on water-rock interactions of trace elements in groundwater with leaching experiments.
    Yu Z; Zhang L; Jiang P; Papelis C; Li Y
    Ground Water; 2015 Apr; 53 Suppl 1():95-102. PubMed ID: 24601971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes.
    Su T; Wang J
    Chemosphere; 2011 Nov; 85(8):1368-74. PubMed ID: 21880348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemical modelling of arsenic and selenium leaching in alkaline water treatment sludge from the production of non-ferrous metals.
    Cornelis G; Poppe S; Van Gerven T; Van den Broeck E; Ceulemans M; Vandecasteele C
    J Hazard Mater; 2008 Nov; 159(2-3):271-9. PubMed ID: 18387734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic release from iron rich mineral processing waste: Influence of pH and redox potential.
    Al-Abed SR; Jegadeesan G; Purandare J; Allen D
    Chemosphere; 2007 Jan; 66(4):775-82. PubMed ID: 16949129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.
    Liu CC; Kar S; Jean JS; Wang CH; Lee YC; Sracek O; Li Z; Bundschuh J; Yang HJ; Chen CY
    J Hazard Mater; 2013 Nov; 262():980-8. PubMed ID: 22809631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy).
    Carraro A; Fabbri P; Giaretta A; Peruzzo L; Tateo F; Tellini F
    Sci Total Environ; 2015 Nov; 532():581-94. PubMed ID: 26115337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for leaching of arsenic from excavated rock after different drying treatments.
    Li J; Kosugi T; Riya S; Hashimoto Y; Hou H; Terada A; Hosomi M
    Chemosphere; 2016 Jul; 154():276-282. PubMed ID: 27058919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.