These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 24370989)
1. Repeatability and accuracy of a non-invasive method of measuring internal and external rotation of the tibia. Russell DF; Deakin AH; Fogg QA; Picard F Knee Surg Sports Traumatol Arthrosc; 2014 Aug; 22(8):1771-7. PubMed ID: 24370989 [TBL] [Abstract][Full Text] [Related]
2. Non-invasive quantification of lower limb mechanical alignment in flexion. Russell D; Deakin A; Fogg QA; Picard F Comput Aided Surg; 2014; 19(4-6):64-70. PubMed ID: 24856249 [TBL] [Abstract][Full Text] [Related]
3. Quantitative measurement of lower limb mechanical alignment and coronal knee laxity in early flexion. Russell DF; Deakin AH; Fogg QA; Picard F Knee; 2014 Dec; 21(6):1063-8. PubMed ID: 25150912 [TBL] [Abstract][Full Text] [Related]
4. Measurement of rotational laxity of the knee: in vitro comparison of accuracy between the tibia, overlying skin, and foot. Alam M; Bull AM; Thomas Rd; Amis AA Am J Sports Med; 2011 Dec; 39(12):2575-81. PubMed ID: 21997728 [TBL] [Abstract][Full Text] [Related]
5. Rotational Laxity Control by the Anterolateral Ligament and the Lateral Meniscus Is Dependent on Knee Flexion Angle: A Cadaveric Biomechanical Study. Lording T; Corbo G; Bryant D; Burkhart TA; Getgood A Clin Orthop Relat Res; 2017 Oct; 475(10):2401-2408. PubMed ID: 28536855 [TBL] [Abstract][Full Text] [Related]
6. Non-invasive, non-radiological quantificationof anteroposterior knee joint ligamentous laxity: A study in cadavers. Russell DF; Deakin AH; Fogg QA; Picard F Bone Joint Res; 2013; 2(11):233-7. PubMed ID: 24184443 [TBL] [Abstract][Full Text] [Related]
7. A clinical device for measuring internal-external rotational laxity of the knee. Alam M; Bull AM; Thomas Rd; Amis AA Am J Sports Med; 2013 Jan; 41(1):87-94. PubMed ID: 23277467 [TBL] [Abstract][Full Text] [Related]
8. Rotational and varus-valgus laxity affects kinematics of the normal knee: A cadaveric study. Wada K; Hamada D; Takasago T; Goto T; Tonogai I; Tsuruo Y; Sairyo K J Orthop Surg (Hong Kong); 2019; 27(3):2309499019873726. PubMed ID: 31533546 [TBL] [Abstract][Full Text] [Related]
9. Comparison of cutaneous and transosseous electromagnetic position sensors in the assessment of tibial rotation in a cadaveric model. Magit DP; McGarry M; Tibone JE; Lee TQ Am J Sports Med; 2008 May; 36(5):971-7. PubMed ID: 18272792 [TBL] [Abstract][Full Text] [Related]
10. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Wünschel M; Müller O; Lo J; Obloh C; Wülker N Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837 [TBL] [Abstract][Full Text] [Related]
11. An analysis of normative data on the knee rotatory profile and the usefulness of the Rotatometer, a new instrument for measuring tibiofemoral rotation: the reliability of the knee Rotatometer. Chung JH; Ryu KJ; Lee DH; Yoon KH; Park YW; Kim HJ; Kim JH Knee Surg Sports Traumatol Arthrosc; 2015 Sep; 23(9):2727-33. PubMed ID: 24817107 [TBL] [Abstract][Full Text] [Related]
12. The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee. Kittl C; El-Daou H; Athwal KK; Gupte CM; Weiler A; Williams A; Amis AA Am J Sports Med; 2016 Feb; 44(2):345-54. PubMed ID: 26657572 [TBL] [Abstract][Full Text] [Related]
13. Can we define envelope of laxity during navigated knee arthroplasty? Ghosh KM; Blain AP; Longstaff L; Rushton S; Amis AA; Deehan DJ Knee Surg Sports Traumatol Arthrosc; 2014 Aug; 22(8):1736-43. PubMed ID: 23832172 [TBL] [Abstract][Full Text] [Related]
14. Relative role changing of lateral collateral ligament on the posterolateral rotatory instability according to the knee flexion angles: a biomechanical comparative study of role of lateral collateral ligament and popliteofibular ligament. Lim HC; Bae JH; Bae TS; Moon BC; Shyam AK; Wang JH Arch Orthop Trauma Surg; 2012 Nov; 132(11):1631-6. PubMed ID: 22847725 [TBL] [Abstract][Full Text] [Related]
15. The effects of tibial rotation on posterior translation in knees in which the posterior cruciate ligament has been cut. Bergfeld JA; McAllister DR; Parker RD; Valdevit AD; Kambic H J Bone Joint Surg Am; 2001 Sep; 83(9):1339-43. PubMed ID: 11568196 [TBL] [Abstract][Full Text] [Related]
16. Posteromedial Meniscocapsular Lesions Increase Tibiofemoral Joint Laxity With Anterior Cruciate Ligament Deficiency, and Their Repair Reduces Laxity. Stephen JM; Halewood C; Kittl C; Bollen SR; Williams A; Amis AA Am J Sports Med; 2016 Feb; 44(2):400-8. PubMed ID: 26657852 [TBL] [Abstract][Full Text] [Related]
17. Development of a simple device for measurement of rotational knee laxity. Musahl V; Bell KM; Tsai AG; Costic RS; Allaire R; Zantop T; Irrgang JJ; Fu FH Knee Surg Sports Traumatol Arthrosc; 2007 Aug; 15(8):1009-12. PubMed ID: 17387453 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Restraints of the Medial Side of the Knee: The Semimembranosus Corner Revisited. Kittl C; Becker DK; Raschke MJ; Müller M; Wierer G; Domnick C; Glasbrenner J; Michel P; Herbort M Am J Sports Med; 2019 Mar; 47(4):863-869. PubMed ID: 30870030 [TBL] [Abstract][Full Text] [Related]
19. Anterior laxity, lateral tibial slope, and in situ ACL force differentiate knees exhibiting distinct patterns of motion during a pivoting event: A human cadaveric study. Kent RN; Amirtharaj MJ; Hardy BM; Pearle AD; Wickiewicz TL; Imhauser CW J Biomech; 2018 Jun; 74():9-15. PubMed ID: 29752053 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a simulated pivot shift test: a biomechanical study. Engebretsen L; Wijdicks CA; Anderson CJ; Westerhaus B; LaPrade RF Knee Surg Sports Traumatol Arthrosc; 2012 Apr; 20(4):698-702. PubMed ID: 22057355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]