BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24371170)

  • 1. Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma.
    Gong J; Diao B; Yao GJ; Liu Y; Xu GZ
    J Genet; 2013 Dec; 92(3):489-97. PubMed ID: 24371170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas.
    Joshi H; Vastrad B; Vastrad C
    J Mol Neurosci; 2019 Aug; 68(4):565-589. PubMed ID: 30982163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of hub genes and construction of transcriptional regulatory network for the progression of colon adenocarcinoma hub genes and TF regulatory network of colon adenocarcinoma.
    Wei S; Chen J; Huang Y; Sun Q; Wang H; Liang X; Hu Z; Li X
    J Cell Physiol; 2020 Mar; 235(3):2037-2048. PubMed ID: 31612481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.
    Ye Y; Li SL; Wang SY
    PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs and Target Genes in Pituitary Adenomas.
    Feng Y; Mao ZG; Wang X; Du Q; Jian M; Zhu D; Xiao Z; Wang HJ; Zhu YH
    Horm Metab Res; 2018 Mar; 50(3):179-192. PubMed ID: 29351706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key genes associated with colorectal cancer based on the transcriptional network.
    Chen G; Li H; Niu X; Li G; Han N; Li X; Li G; Liu Y; Sun G; Wang Y; Li Z; Li Q
    Pathol Oncol Res; 2015 Jul; 21(3):719-25. PubMed ID: 25613817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Systems Analysis Explores Dysfunctional Molecular Modules and Regulatory Factors in Children with Autism Spectrum Disorder.
    Gao H; Zhong J; Huang Q; Wu X; Mo X; Lu L; Liang H
    J Mol Neurosci; 2021 Feb; 71(2):358-368. PubMed ID: 32653993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy.
    Recamonde-Mendoza M; Werhli AV; Biolo A
    Gene; 2019 May; 698():157-169. PubMed ID: 30844478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The role of miRNAs in the pathogenesis of pituitary adenomas].
    Németh K; Darvasi O; Szücs N; Czirják S; Butz H
    Orv Hetil; 2018 Feb; 159(7):252-259. PubMed ID: 29429349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.
    Chen W; Zhao W; Yang A; Xu A; Wang H; Cong M; Liu T; Wang P; You H
    Gene; 2017 Dec; 636():87-95. PubMed ID: 28919164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors.
    Müssnich P; Raverot G; Jaffrain-Rea ML; Fraggetta F; Wierinckx A; Trouillas J; Fusco A; D'Angelo D
    Cell Cycle; 2015; 14(16):2590-7. PubMed ID: 26125663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer.
    Ying H; Lv J; Ying T; Li J; Yang Q; Ma Y
    Tumour Biol; 2013 Oct; 34(5):3219-25. PubMed ID: 23990444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells.
    Kitchen MO; Yacqub-Usman K; Emes RD; Richardson A; Clayton RN; Farrell WE
    Pituitary; 2015 Oct; 18(5):674-84. PubMed ID: 25557289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentially Expressed miRNAs Influence Metabolic Processes in Pituitary Oncocytoma.
    Krokker L; Nyírő G; Reiniger L; Darvasi O; Szücs N; Czirják S; Tóth M; Igaz P; Patócs A; Butz H
    Neurochem Res; 2019 Oct; 44(10):2360-2371. PubMed ID: 30945144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer.
    Wang H; Luo J; Liu C; Niu H; Wang J; Liu Q; Zhao Z; Xu H; Ding Y; Sun J; Zhang Q
    BMC Bioinformatics; 2017 Sep; 18(1):388. PubMed ID: 28865443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of microRNA-21 targeting PITX2 on proliferation and apoptosis of pituitary tumor cells.
    Cui M; Zhang M; Liu HF; Wang JP
    Eur Rev Med Pharmacol Sci; 2017 Jul; 21(13):2995-3004. PubMed ID: 28742208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring microRNA and transcription factor regulatory networks in heterogeneous data.
    Le TD; Liu L; Liu B; Tsykin A; Goodall GJ; Satou K; Li J
    BMC Bioinformatics; 2013 Mar; 14():92. PubMed ID: 23497388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
    Jayavelu ND; Bar N
    BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of microRNAs associated with the aggressiveness of prolactin pituitary tumors using bioinformatic analysis.
    Wang Z; Gao L; Guo X; Feng C; Deng K; Lian W; Xing B
    Oncol Rep; 2019 Aug; 42(2):533-548. PubMed ID: 31173251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.