BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24371267)

  • 1. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins.
    Goncearenco A; Ma BG; Berezovsky IN
    Nucleic Acids Res; 2014 Mar; 42(5):2879-92. PubMed ID: 24371267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein and DNA sequence determinants of thermophilic adaptation.
    Zeldovich KB; Berezovsky IN; Shakhnovich EI
    PLoS Comput Biol; 2007 Jan; 3(1):e5. PubMed ID: 17222055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fundamental tradeoff in genomes and proteomes of prokaryotes established by the genetic code, codon entropy, and physics of nucleic acids and proteins.
    Goncearenco A; Berezovsky IN
    Biol Direct; 2014 Dec; 9():29. PubMed ID: 25496919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living in trinity of extremes: Genomic and proteomic signatures of halophilic, thermophilic, and pH adaptation.
    Amangeldina A; Tan ZW; Berezovsky IN
    Curr Res Struct Biol; 2024; 7():100129. PubMed ID: 38327713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures.
    Nakashima H; Fukuchi S; Nishikawa K
    J Biochem; 2003 Apr; 133(4):507-13. PubMed ID: 12761299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis.
    Venev SV; Zeldovich KB
    Mol Biol Evol; 2018 Jan; 35(1):211-224. PubMed ID: 29106597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes.
    Hurst LD; Merchant AR
    Proc Biol Sci; 2001 Mar; 268(1466):493-7. PubMed ID: 11296861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of Borrelia burgdorferi to its natural hosts by synonymous codon and amino acid usage.
    Ma XX; Ma P; Chang QY; Liu ZB; Zhang D; Zhou XK; Ma ZR; Cao X
    J Basic Microbiol; 2018 May; 58(5):414-424. PubMed ID: 29534300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid and nucleotide recurrence in aligned sequences: synonymous substitution patterns in association with global and local base compositions.
    Nishizawa M; Nishizawa K
    Nucleic Acids Res; 2000 Oct; 28(19):3801-10. PubMed ID: 11000273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation.
    Das S; Paul S; Bag SK; Dutta C
    BMC Genomics; 2006 Jul; 7():186. PubMed ID: 16869956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases.
    Biro JC
    Theor Biol Med Model; 2008 Jul; 5():14. PubMed ID: 18664268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compositional biases in RNA viruses: Causes, consequences and applications.
    Gaunt ER; Digard P
    Wiley Interdiscip Rev RNA; 2022 Mar; 13(2):e1679. PubMed ID: 34155814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation.
    Dutta A; Chaudhuri K
    FEMS Microbiol Lett; 2010 Apr; 305(2):100-8. PubMed ID: 20659165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii.
    Saunders NF; Thomas T; Curmi PM; Mattick JS; Kuczek E; Slade R; Davis J; Franzmann PD; Boone D; Rusterholtz K; Feldman R; Gates C; Bench S; Sowers K; Kadner K; Aerts A; Dehal P; Detter C; Glavina T; Lucas S; Richardson P; Larimer F; Hauser L; Land M; Cavicchioli R
    Genome Res; 2003 Jul; 13(7):1580-8. PubMed ID: 12805271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence coevolution between RNA and protein characterized by mutual information between residue triplets.
    Brandman R; Brandman Y; Pande VS
    PLoS One; 2012; 7(1):e30022. PubMed ID: 22279560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes.
    Windisch HS; Lucassen M; Frickenhaus S
    BMC Genomics; 2012 Oct; 13():549. PubMed ID: 23051706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the origin of genomic adaptation at high temperature for prokaryotic organisms.
    Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2005 May; 330(3):629-32. PubMed ID: 15809043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic and proteomic adaptations to growth at high temperature.
    Hickey DA; Singer GA
    Genome Biol; 2004; 5(10):117. PubMed ID: 15461805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content.
    Singer GA; Hickey DA
    Gene; 2003 Oct; 317(1-2):39-47. PubMed ID: 14604790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI).
    Puigbò P; Bravo IG; Garcia-Vallvé S
    BMC Bioinformatics; 2008 Jan; 9():65. PubMed ID: 18230160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.