These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 24371572)
1. Pre-feeding of a glycolipid binding protein LEC-8 from Caenorhabditis elegans revealed enhanced tolerance to Cry1Ac toxin in Helicoverpa armigera. Ma G; Schmidt O; Keller M Results Immunol; 2012; 2():97-103. PubMed ID: 24371572 [TBL] [Abstract][Full Text] [Related]
2. A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection. Ideo H; Fukushima K; Gengyo-Ando K; Mitani S; Dejima K; Nomura K; Yamashita K J Biol Chem; 2009 Sep; 284(39):26493-501. PubMed ID: 19635802 [TBL] [Abstract][Full Text] [Related]
3. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Visweshwar R; Sharma HC; Akbar SM; Sreeramulu K Appl Biochem Biotechnol; 2015 Dec; 177(8):1621-37. PubMed ID: 26384494 [TBL] [Abstract][Full Text] [Related]
4. Synergistic selection of a Helicoverpa armigera cadherin fragment with Cry1Ac in different cells and insects. Hao J; Gao M; Hu X; Lu L; Zhang X; Liu Y; Zhong J; Liu X Int J Biol Macromol; 2020 Dec; 164():3667-3675. PubMed ID: 32853622 [TBL] [Abstract][Full Text] [Related]
5. Bacillus thuringiensis Cry1Ab Domain III β-16 Is Involved in Binding to Prohibitin, Which Correlates with Toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae). Sena da Silva IH; Gómez I; Pacheco S; Sánchez J; Zhang J; Luque Castellane TC; Aparecida Desiderio J; Soberón M; Bravo A; Polanczyk RA Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127814 [No Abstract] [Full Text] [Related]
6. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. Liu C; Wu K; Wu Y; Gao Y; Ning C; Oppert B J Insect Physiol; 2009 Aug; 55(8):686-93. PubMed ID: 19446559 [TBL] [Abstract][Full Text] [Related]
7. Influence of oxalic and malic acids in chickpea leaf exudates on the biological activity of CryIAc towards Helicoverpa armigera. Devi VS; Sharma HC; Rao PA J Insect Physiol; 2013 Apr; 59(4):394-9. PubMed ID: 23391855 [TBL] [Abstract][Full Text] [Related]
8. Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera. Zhao Z; Li Y; Xiao Y; Ali A; Dhiloo KH; Chen W; Wu K Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27399776 [TBL] [Abstract][Full Text] [Related]
9. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. Wei W; Pan S; Ma Y; Xiao Y; Yang Y; He S; Bravo A; Soberón M; Liu K Insect Biochem Mol Biol; 2020 Mar; 118():103306. PubMed ID: 31843687 [TBL] [Abstract][Full Text] [Related]
10. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523 [TBL] [Abstract][Full Text] [Related]
11. ATP Synthase Subunit α from Yao X; Duan Y; Deng Z; Zhao W; Wei J; Li X; An S J Agric Food Chem; 2023 Apr; ():. PubMed ID: 37036055 [TBL] [Abstract][Full Text] [Related]
12. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. Xu X; Wu Y J Invertebr Pathol; 2008 Jan; 97(1):27-32. PubMed ID: 17681529 [TBL] [Abstract][Full Text] [Related]
13. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Peng D; Xu X; Ye W; Yu Z; Sun M Appl Microbiol Biotechnol; 2010 Jan; 85(4):1033-40. PubMed ID: 19652967 [TBL] [Abstract][Full Text] [Related]
14. Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hübner). Zhang C; Wei J; Naing ZL; Soe ET; Liang G Pestic Biochem Physiol; 2021 Jun; 175():104837. PubMed ID: 33993962 [TBL] [Abstract][Full Text] [Related]
15. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
16. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
17. Bacillus thuringiensis Cry1Ac toxin-binding and pore-forming activity in brush border membrane vesicles prepared from anterior and posterior midgut regions of lepidopteran larvae. Rodrigo-Simón A; Caccia S; Ferré J Appl Environ Microbiol; 2008 Mar; 74(6):1710-6. PubMed ID: 18223107 [TBL] [Abstract][Full Text] [Related]
18. Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity. Zhang H; Yu S; Shi Y; Yang Y; Fabrick JA; Wu Y Insect Biochem Mol Biol; 2017 Jul; 86():41-49. PubMed ID: 28576655 [TBL] [Abstract][Full Text] [Related]
19. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. Liu S; Wang S; Wu S; Wu Y; Yang Y PLoS One; 2020; 15(1):e0228159. PubMed ID: 32004347 [TBL] [Abstract][Full Text] [Related]
20. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin. Da Silva IHS; Goméz I; Sánchez J; Martínez de Castro DL; Valicente FH; Soberón M; Polanczyk RA; Bravo A PLoS One; 2018; 13(12):e0207789. PubMed ID: 30521540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]