These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 2437160)
1. Histochemical identification of pallidal and striatal structures in the lizard Gekko gecko: evidence for compartmentalization. Russchen FT; Smeets WJ; Hoogland PV J Comp Neurol; 1987 Feb; 256(3):329-41. PubMed ID: 2437160 [TBL] [Abstract][Full Text] [Related]
2. Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. Russchen FT; Jonker AJ J Comp Neurol; 1988 Oct; 276(1):61-80. PubMed ID: 3192764 [TBL] [Abstract][Full Text] [Related]
3. Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Haber SN; Nauta WJ Neuroscience; 1983 Jun; 9(2):245-60. PubMed ID: 6192358 [TBL] [Abstract][Full Text] [Related]
4. Compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein. Voorn P; Gerfen CR; Groenewegen HJ J Comp Neurol; 1989 Nov; 289(2):189-201. PubMed ID: 2478598 [TBL] [Abstract][Full Text] [Related]
5. Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. Haber SN; Groenewegen HJ; Grove EA; Nauta WJ J Comp Neurol; 1985 May; 235(3):322-35. PubMed ID: 3998213 [TBL] [Abstract][Full Text] [Related]
6. Immunohistochemical demonstration of differential substance P-, met-enkephalin-, and glutamic-acid-decarboxylase-containing cell body and axon distributions in the corpus striatum of the cat. Beckstead RM; Kersey KS J Comp Neurol; 1985 Feb; 232(4):481-98. PubMed ID: 2579980 [TBL] [Abstract][Full Text] [Related]
7. The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey. Haber SN; Wolfe DP; Groenewegen HJ Neuroscience; 1990; 39(2):323-38. PubMed ID: 1708114 [TBL] [Abstract][Full Text] [Related]
8. Ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity. Zahm DS; Heimer L J Comp Neurol; 1988 Jun; 272(4):516-35. PubMed ID: 2458391 [TBL] [Abstract][Full Text] [Related]
9. Light and electron microscopic characterization of cholinergic and dopaminergic structures in the striatal complex and the dorsal ventricular ridge of the lizard Gekko gecko. Henselmans JM; Wouterlood FG J Comp Neurol; 1994 Jul; 345(1):69-83. PubMed ID: 7916354 [TBL] [Abstract][Full Text] [Related]
10. The septal complex of the telencephalon of the lizard Podarcis hispanica. I. Chemoarchitectonical organization. Font C; Hoogland PV; Vermeulen van der Zee E; Pérez-Clausell J; Martínez-García F J Comp Neurol; 1995 Aug; 359(1):117-30. PubMed ID: 8557841 [TBL] [Abstract][Full Text] [Related]
11. Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. Groenewegen HJ; Russchen FT J Comp Neurol; 1984 Mar; 223(3):347-67. PubMed ID: 6323552 [TBL] [Abstract][Full Text] [Related]
12. Ventral striatopallidal oxytocin and vasopressin V1a receptors in the monogamous prairie vole (Microtus ochrogaster). Lim MM; Murphy AZ; Young LJ J Comp Neurol; 2004 Jan; 468(4):555-70. PubMed ID: 14689486 [TBL] [Abstract][Full Text] [Related]
13. Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Berridge CW; Stratford TL; Foote SL; Kelley AE Synapse; 1997 Nov; 27(3):230-41. PubMed ID: 9329158 [TBL] [Abstract][Full Text] [Related]
14. Afferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. Gonzalez A; Russchen FT; Lohman AH Brain Behav Evol; 1990; 36(1):39-58. PubMed ID: 2257479 [TBL] [Abstract][Full Text] [Related]
15. Immunocytochemical studies of substance P and leucine-enkephalin in Huntington's disease. Marshall PE; Landis DM; Zalneraitis EL Brain Res; 1983 Dec; 289(1-2):11-26. PubMed ID: 6198034 [TBL] [Abstract][Full Text] [Related]
16. Cholinergic, monoaminergic and peptidergic innervation of the primary visual centers in the brain of the lizards Gekko gecko and Gallotia galloti. Medina L; Smeets WJ Brain Behav Evol; 1992; 40(4):157-81. PubMed ID: 1280514 [TBL] [Abstract][Full Text] [Related]
17. Two transpallidal pathways originating in the rat nucleus accumbens. Zahm DS; Heimer L J Comp Neurol; 1990 Dec; 302(3):437-46. PubMed ID: 1702109 [TBL] [Abstract][Full Text] [Related]
18. The striatal mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum. Martin LJ; Hadfield MG; Dellovade TL; Price DL Neuroscience; 1991; 43(2-3):397-417. PubMed ID: 1681464 [TBL] [Abstract][Full Text] [Related]
19. Neurochemical compartmentalization of the globus pallidus in the rat: an immunocytochemical study of calcium-binding proteins. Rajakumar N; Rushlow W; Naus CC; Elisevich K; Flumerfelt BA J Comp Neurol; 1994 Aug; 346(3):337-48. PubMed ID: 7995854 [TBL] [Abstract][Full Text] [Related]
20. Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin. Hoogland PV; Vermeulen-Vanderzee E J Comp Neurol; 1989 Jul; 285(3):289-303. PubMed ID: 2760266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]