These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24372062)

  • 1. The formation of categories and the representation of feature saliency: analysis with a computational model trained with an Hebbian paradigm.
    Ursino M; Cuppini C; Magosso E
    J Integr Neurosci; 2013 Dec; 12(4):401-25. PubMed ID: 24372062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network for learning the meaning of objects and words from a featural representation.
    Ursino M; Cuppini C; Magosso E
    Neural Netw; 2015 Mar; 63():234-53. PubMed ID: 25569782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated neural model of semantic memory, lexical retrieval and category formation, based on a distributed feature representation.
    Ursino M; Cuppini C; Magosso E
    Cogn Neurodyn; 2011 Jun; 5(2):183-207. PubMed ID: 22654990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network model of semantic memory linking feature-based object representation and words.
    Cuppini C; Magosso E; Ursino M
    Biosystems; 2009 Jun; 96(3):195-205. PubMed ID: 19758544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms.
    Cona F; Zavaglia M; Ursino M
    Int J Neural Syst; 2012 Apr; 22(2):1250003. PubMed ID: 23627589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feature-based neurocomputational model of semantic memory.
    Ursino M; Cuppini C; Cappa SF; CatricalĂ  E
    Cogn Neurodyn; 2018 Dec; 12(6):525-547. PubMed ID: 30483362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization.
    Ursino M; Magosso E; Cuppini C
    IEEE Trans Neural Netw; 2009 Feb; 20(2):316-35. PubMed ID: 19171515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational model of the lexical-semantic system based on a grounded cognition approach.
    Ursino M; Cuppini C; Magosso E
    Front Psychol; 2010; 1():221. PubMed ID: 21833276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules.
    Ursino M; Magosso E; La Cara GE; Cuppini C
    Biosystems; 2006 Sep; 85(3):201-18. PubMed ID: 16635545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.
    Grossberg S
    Brain Res; 2015 Sep; 1621():270-93. PubMed ID: 25446436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning by Hebbian synapses with adaptive thresholds.
    Pennartz CM
    Neuroscience; 1997 Nov; 81(2):303-19. PubMed ID: 9300423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing one-shot learning with binary synapses.
    Romani S; Amit DJ; Amit Y
    Neural Comput; 2008 Aug; 20(8):1928-50. PubMed ID: 18386988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential category learning processes: The neural basis of comparison-based learning and induction.
    Hammer R; Brechmann A; Ohl F; Weinshall D; Hochstein S
    Neuroimage; 2010 Aug; 52(2):699-709. PubMed ID: 20363336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of feature categorization.
    MartĂ­ D; Rinzel J
    Neural Comput; 2013 Jan; 25(1):1-45. PubMed ID: 23020108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Theory of How Columns in the Neocortex Enable Learning the Structure of the World.
    Hawkins J; Ahmad S; Cui Y
    Front Neural Circuits; 2017; 11():81. PubMed ID: 29118696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning separate visual representations of independently rotating objects.
    Tromans JM; Page HJ; Stringer SM
    Network; 2012; 23(1-2):1-23. PubMed ID: 22364581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning invariant object recognition in the visual system with continuous transformations.
    Stringer SM; Perry G; Rolls ET; Proske JH
    Biol Cybern; 2006 Feb; 94(2):128-42. PubMed ID: 16369795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection.
    Li X; Zhao L; Wei L; Yang MH; Wu F; Zhuang Y; Ling H; Wang J
    IEEE Trans Image Process; 2016 Aug; 25(8):3919-30. PubMed ID: 27305676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organising continuous attractor networks with multiple activity packets, and the representation of space.
    Stringer SM; Rolls ET; Trappenberg TP
    Neural Netw; 2004 Jan; 17(1):5-27. PubMed ID: 14690703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid learning network for shift, orientation, and scaling invariant pattern recognition.
    Wang R
    Network; 2001 Nov; 12(4):493-512. PubMed ID: 11762901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.