These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24372103)
1. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons. Sadeghi M; Tzschentke TM; Christie MJ Br J Pharmacol; 2015 Jan; 172(2):460-8. PubMed ID: 24372103 [TBL] [Abstract][Full Text] [Related]
2. Effect of tapentadol on neurons in the locus coeruleus. Torres-Sanchez S; Alba-Delgado C; Llorca-Torralba M; Mico JA; Berrocoso E Neuropharmacology; 2013 Sep; 72():250-8. PubMed ID: 23664814 [TBL] [Abstract][Full Text] [Related]
3. Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons. Levitt ES; Williams JT Mol Pharmacol; 2018 Jan; 93(1):8-13. PubMed ID: 29097440 [TBL] [Abstract][Full Text] [Related]
4. The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy. Gonçalves L; Friend LV; Dickenson AH Eur J Pharmacol; 2015 Feb; 749():151-60. PubMed ID: 25576174 [TBL] [Abstract][Full Text] [Related]
5. Differential contribution of opioid and noradrenergic mechanisms of tapentadol in rat models of nociceptive and neuropathic pain. Schröder W; Vry JD; Tzschentke TM; Jahnel U; Christoph T Eur J Pain; 2010 Sep; 14(8):814-21. PubMed ID: 20541444 [TBL] [Abstract][Full Text] [Related]
6. Morphine-6 beta-glucuronide has a higher efficacy than morphine as a mu-opioid receptor agonist in the rat locus coeruleus. Osborne PB; Chieng B; Christie MJ Br J Pharmacol; 2000 Dec; 131(7):1422-8. PubMed ID: 11090116 [TBL] [Abstract][Full Text] [Related]
7. Effect of the norepinephrine transporter (NET) inhibition on μ-opioid receptor (MOR)-induced anti-nociception in a bone cancer pain model. Ono H; Nakamura A; Kanbara T; Minami K; Shinohara S; Sakaguchi G; Kanemasa T J Pharmacol Sci; 2014; 125(3):264-73. PubMed ID: 24965165 [TBL] [Abstract][Full Text] [Related]
8. Continued morphine modulation of calcium channel currents in acutely isolated locus coeruleus neurons from morphine-dependent rats. Connor M; Borgland SL; Christie MJ Br J Pharmacol; 1999 Dec; 128(7):1561-9. PubMed ID: 10602337 [TBL] [Abstract][Full Text] [Related]
10. Does PKC activation increase the homologous desensitization of μ opioid receptors? Arttamangkul S; Birdsong W; Williams JT Br J Pharmacol; 2015 Jan; 172(2):583-92. PubMed ID: 24697621 [TBL] [Abstract][Full Text] [Related]
11. Tapentadol shows lower intrinsic efficacy at µ receptor than morphine and oxycodone. Manandhar P; Connor M; Santiago M Pharmacol Res Perspect; 2022 Feb; 10(1):e00921. PubMed ID: 35084120 [TBL] [Abstract][Full Text] [Related]
13. The mu-opioid receptor agonist/noradrenaline reuptake inhibition (MOR-NRI) concept in analgesia: the case of tapentadol. Tzschentke TM; Christoph T; Kögel BY CNS Drugs; 2014 Apr; 28(4):319-29. PubMed ID: 24578192 [TBL] [Abstract][Full Text] [Related]
14. Two distinct forms of desensitization of G-protein coupled inwardly rectifying potassium currents evoked by alkaloid and peptide mu-opioid receptor agonists. Blanchet C; Sollini M; Lüscher C Mol Cell Neurosci; 2003 Oct; 24(2):517-23. PubMed ID: 14572471 [TBL] [Abstract][Full Text] [Related]
15. Activation of mu-opioid receptors excites a population of locus coeruleus-spinal neurons through presynaptic disinhibition. Pan YZ; Li DP; Chen SR; Pan HL Brain Res; 2004 Jan; 997(1):67-78. PubMed ID: 14715151 [TBL] [Abstract][Full Text] [Related]
16. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons. Connor M; Bagley EE; Chieng BC; Christie MJ Br J Pharmacol; 2015 Jan; 172(2):492-500. PubMed ID: 24597632 [TBL] [Abstract][Full Text] [Related]
17. BU08073 a buprenorphine analogue with partial agonist activity at μ-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Khroyan TV; Wu J; Polgar WE; Cami-Kobeci G; Fotaki N; Husbands SM; Toll L Br J Pharmacol; 2015 Jan; 172(2):668-80. PubMed ID: 24903063 [TBL] [Abstract][Full Text] [Related]
18. Characterization of functional μ opioid receptor turnover in rat locus coeruleus: an electrophysiological and immunocytochemical study. Medrano MC; Santamarta MT; Pablos P; Aira Z; Buesa I; Azkue JJ; Mendiguren A; Pineda J Br J Pharmacol; 2017 Aug; 174(16):2758-2772. PubMed ID: 28589556 [TBL] [Abstract][Full Text] [Related]
19. [Tapentadol: with two mechanisms of action in one molecule effective against nociceptive and neuropathic pain. Preclinical overview]. Tzschentke TM; Christoph T; Schröder W; Englberger W; De Vry J; Jahnel U; Kögel BY Schmerz; 2011 Feb; 25(1):19-25. PubMed ID: 21258822 [TBL] [Abstract][Full Text] [Related]
20. The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons. Chieng B; Connor M; Christie MJ Mol Pharmacol; 1996 Sep; 50(3):650-5. PubMed ID: 8794906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]