These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 24372253)

  • 1. Research progress in live attenuated Brucella vaccine development.
    Wang Z; Wu Q
    Curr Pharm Biotechnol; 2013; 14(10):887-96. PubMed ID: 24372253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipopolysaccharide as a target for brucellosis vaccine design.
    Conde-Álvarez R; Arce-Gorvel V; Gil-Ramírez Y; Iriarte M; Grilló MJ; Gorvel JP; Moriyón I
    Microb Pathog; 2013 May; 58():29-34. PubMed ID: 23219811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunogenic and protective antigens of Brucella as vaccine candidates.
    Masjedian Jezi F; Razavi S; Mirnejad R; Zamani K
    Comp Immunol Microbiol Infect Dis; 2019 Aug; 65():29-36. PubMed ID: 31300122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a Brucella vaccine for humans.
    Perkins SD; Smither SJ; Atkins HS
    FEMS Microbiol Rev; 2010 May; 34(3):379-94. PubMed ID: 20180858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confronting the barriers to develop novel vaccines against brucellosis.
    Oliveira SC; Giambartolomei GH; Cassataro J
    Expert Rev Vaccines; 2011 Sep; 10(9):1291-305. PubMed ID: 21919619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and trial of vaccines against
    Lalsiamthara J; Lee JH
    J Vet Sci; 2017 Aug; 18(S1):281-290. PubMed ID: 28859268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans.
    Ko J; Splitter GA
    Clin Microbiol Rev; 2003 Jan; 16(1):65-78. PubMed ID: 12525425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brucellosis vaccines based on the open reading frames from genomic island 3 of Brucella abortus.
    Gómez L; Alvarez F; Betancur D; Oñate A
    Vaccine; 2018 May; 36(21):2928-2936. PubMed ID: 29685597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates.
    Todd TE; Tibi O; Lin Y; Sayers S; Bronner DN; Xiang Z; He Y
    BMC Bioinformatics; 2013; 14 Suppl 6(Suppl 6):S3. PubMed ID: 23735014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rough vaccines in animal brucellosis: structural and genetic basis and present status.
    Moriyón I; Grilló MJ; Monreal D; González D; Marín C; López-Goñi I; Mainar-Jaime RC; Moreno E; Blasco JM
    Vet Res; 2004; 35(1):1-38. PubMed ID: 15099501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brucella abortus 2308ΔNodVΔNodW double-mutant is highly attenuated and confers protection against wild-type challenge in BALB/c mice.
    Li Z; Wang S; Zhang J; Yang G; Yuan B; Huang J; Han J; Xi L; Xiao Y; Chen C; Zhang H
    Microb Pathog; 2017 May; 106():30-39. PubMed ID: 28131952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis.
    Pandey A; Cabello A; Akoolo L; Rice-Ficht A; Arenas-Gamboa A; McMurray D; Ficht TA; de Figueiredo P
    PLoS Negl Trop Dis; 2016 Aug; 10(8):e0004572. PubMed ID: 27537413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative strategies for vaccination to brucellosis.
    Pascual DW; Yang X; Wang H; Goodwin Z; Hoffman C; Clapp B
    Microbes Infect; 2018; 20(9-10):599-605. PubMed ID: 29287984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Efficacy of the Brucella canis RM6/66 Δ
    Stranahan LW; Chaki SP; Garcia-Gonzalez DG; Khalaf OH; Arenas-Gamboa AM
    mSphere; 2020 May; 5(3):. PubMed ID: 32434839
    [No Abstract]   [Full Text] [Related]  

  • 15. Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4.
    Winter AJ; Schurig GG; Boyle SM; Sriranganathan N; Bevins JS; Enright FM; Elzer PH; Kopec JD
    Am J Vet Res; 1996 May; 57(5):677-83. PubMed ID: 8723881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in livestock and wildlife brucellosis vaccination.
    Olsen SC
    Rev Sci Tech; 2013 Apr; 32(1):207-17. PubMed ID: 23837378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brucella melitensis Rev. 1 and Brucella abortus 45-20 vaccines in goats: serologic tests.
    Jones LM; García-Carrillo C; Alton GG
    Am J Vet Res; 1973 Feb; 34(2):199-202. PubMed ID: 4631096
    [No Abstract]   [Full Text] [Related]  

  • 18. Brucellosis: Improved Diagnostics and Vaccine Insights from Synthetic Glycans.
    Bundle DR; McGiven J
    Acc Chem Res; 2017 Dec; 50(12):2958-2967. PubMed ID: 29219305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brucella melitensis 16MΔhfq attenuation confers protection against wild-type challenge in BALB/c mice.
    Zhang J; Guo F; Chen C; Li Z; Zhang H; Wang Y; Zhang K; Du G; Li Y; Wang J; Jian T; Wang Z
    Microbiol Immunol; 2013 Jul; 57(7):502-10. PubMed ID: 23647412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease.
    Martins Rda C; Irache JM; Gamazo C
    Expert Rev Vaccines; 2012 Jan; 11(1):87-95. PubMed ID: 22149711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.