These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24372373)

  • 1. Drivers of leaf-out phenology and their implications for species invasions: insights from Thoreau's Concord.
    Polgar C; Gallinat A; Primack RB
    New Phytol; 2014 Apr; 202(1):106-115. PubMed ID: 24372373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant and bird phenology and plant occurrence from 1851 to 2020 (non-continuous) in Thoreau's Concord, Massachusetts.
    Ellwood ER; Gallinat AS; McDonough MacKenzie C; Miller T; Miller-Rushing AJ; Polgar C; Primack RB
    Ecology; 2022 May; 103(5):e3646. PubMed ID: 35076936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing fruiting phenology across two historical datasets: Thoreau's observations and herbarium specimens.
    Miller TK; Gallinat AS; Smith LC; Primack RB
    Ann Bot; 2021 Jul; 128(2):159-170. PubMed ID: 33830225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global warming and flowering times in Thoreau's Concord: a community perspective.
    Miller-Rushing AJ; Primack RB
    Ecology; 2008 Feb; 89(2):332-41. PubMed ID: 18409423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf-out phenology of temperate woody plants: from trees to ecosystems.
    Polgar CA; Primack RB
    New Phytol; 2011 Sep; 191(4):926-941. PubMed ID: 21762163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Favorable climate change response explains non-native species' success in Thoreau's woods.
    Willis CG; Ruhfel BR; Primack RB; Miller-Rushing AJ; Losos JB; Davis CC
    PLoS One; 2010 Jan; 5(1):e8878. PubMed ID: 20126652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humidity does not appear to trigger leaf out in woody plants.
    Zipf L; Primack RB
    Int J Biometeorol; 2017 Dec; 61(12):2213-2216. PubMed ID: 28828598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants.
    Wang H; Wang H; Ge Q; Dai J
    Front Plant Sci; 2020; 11():443. PubMed ID: 32373144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chilling outweighs photoperiod in preventing precocious spring development.
    Laube J; Sparks TH; Estrella N; Höfler J; Ankerst DP; Menzel A
    Glob Chang Biol; 2014 Jan; 20(1):170-82. PubMed ID: 24323535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights on plant phenological response to temperature revealed from long-term widespread observations in China.
    Zhang H; Liu S; Regnier P; Yuan W
    Glob Chang Biol; 2018 May; 24(5):2066-2078. PubMed ID: 29197142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winter warming offsets one half of the spring warming effects on leaf unfolding.
    Wang H; Dai J; Peñuelas J; Ge Q; Fu YH; Wu C
    Glob Chang Biol; 2022 Oct; 28(20):6033-6049. PubMed ID: 35899626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenological mismatch with trees reduces wildflower carbon budgets.
    Heberling JM; McDonough MacKenzie C; Fridley JD; Kalisz S; Primack RB
    Ecol Lett; 2019 Apr; 22(4):616-623. PubMed ID: 30714287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes.
    Panchen ZA; Primack RB; Gallinat AS; Nordt B; Stevens AD; Du Y; Fahey R
    Ann Bot; 2015 Nov; 116(6):865-73. PubMed ID: 25808654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing spring phenology in a temperate deciduous urban woodland fragment: trees and shrubs.
    Donnelly A; Yu R; Rehberg C; Schwartz MD
    Int J Biometeorol; 2024 May; 68(5):871-882. PubMed ID: 38311643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrigendum.
    New Phytol; 2014 Jun; 202(4):1413. PubMed ID: 33892583
    [No Abstract]   [Full Text] [Related]  

  • 18. Declining global warming effects on the phenology of spring leaf unfolding.
    Fu YH; Zhao H; Piao S; Peaucelle M; Peng S; Zhou G; Ciais P; Huang M; Menzel A; Peñuelas J; Song Y; Vitasse Y; Zeng Z; Janssens IA
    Nature; 2015 Oct; 526(7571):104-7. PubMed ID: 26416746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in the timing and duration of autumn leaf phenology among temperate deciduous trees, native shrubs and non-native shrubs.
    Donnelly A; Yu R; Rehberg C; Schwartz MD
    Int J Biometeorol; 2024 Aug; 68(8):1663-1673. PubMed ID: 38714612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.