BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24372398)

  • 41. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.
    Nair MB; Varma HK; Menon KV; Shenoy SJ; John A
    J Biomed Mater Res A; 2009 Dec; 91(3):855-65. PubMed ID: 19065569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors.
    van der Stok J; Wang H; Amin Yavari S; Siebelt M; Sandker M; Waarsing JH; Verhaar JA; Jahr H; Zadpoor AA; Leeuwenburgh SC; Weinans H
    Tissue Eng Part A; 2013 Dec; 19(23-24):2605-14. PubMed ID: 23822814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bone formation following implantation of titanium sponge rods into humeral osteotomies in dogs: a histological and histometrical study.
    Faria PE; Carvalho AL; Felipucci DN; Wen C; Sennerby L; Salata LA
    Clin Implant Dent Relat Res; 2010 Mar; 12(1):72-9. PubMed ID: 19076179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo.
    Guda T; Walker JA; Singleton B; Hernandez J; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomater Appl; 2014 Mar; 28(7):1016-27. PubMed ID: 23771772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.
    Xie H; Ji Y; Tian Q; Wang X; Zhang N; Zhang Y; Xu J; Wang N; Yan J
    Connect Tissue Res; 2017 Nov; 58(6):553-561. PubMed ID: 28095112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit.
    Rahimzadeh R; Veshkini A; Sharifi D; Hesaraki S
    Acta Cir Bras; 2012 Feb; 27(2):148-54. PubMed ID: 22378370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit.
    Balçik C; Tokdemir T; Senköylü A; Koç N; Timuçin M; Akin S; Korkusuz P; Korkusuz F
    Acta Biomater; 2007 Nov; 3(6):985-96. PubMed ID: 17574942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-vivo efficacy of compliant 3D nano-composite in critical-size bone defect repair: a six month preclinical study in rabbit.
    Sagar N; Pandey AK; Gurbani D; Khan K; Singh D; Chaudhari BP; Soni VP; Chattopadhyay N; Dhawan A; Bellare JR
    PLoS One; 2013; 8(10):e77578. PubMed ID: 24204879
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO
    Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of guided bone regeneration around commercially pure titanium and hydroxyapatite-coated dental implants. II. Histologic analysis.
    Stentz WC; Mealey BL; Gunsolley JC; Waldrop TC
    J Periodontol; 1997 Oct; 68(10):933-49. PubMed ID: 9358360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone regeneration and infiltration of an anisotropic composite scaffold: an experimental study of rabbit cranial defect repair.
    Li J; You F; Li Y; Zuo Y; Li L; Jiang J; Qu Y; Lu M; Man Y; Zou Q
    J Biomater Sci Polym Ed; 2016; 27(4):327-38. PubMed ID: 26775692
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair.
    Gu Y; Wang G; Zhang X; Zhang Y; Zhang C; Liu X; Rahaman MN; Huang W; Pan H
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():294-300. PubMed ID: 24433915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implantation with new three-dimensional porous titanium web for treatment of parietal bone defect in rabbit.
    Guo Z; Iku S; Mu L; Wang Y; Shima T; Seki Y; Li Q; Kuboki Y
    Artif Organs; 2013 Jul; 37(7):623-8. PubMed ID: 23565586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value.
    Shahrezaie M; Moshiri A; Shekarchi B; Oryan A; Maffulli N; Parvizi J
    J Tissue Eng Regen Med; 2018 Apr; 12(4):936-960. PubMed ID: 28714236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bone ingrowth of various porous titanium scaffolds produced by a moldless and space holder technique: an in vivo study in rabbits.
    Prananingrum W; Naito Y; Galli S; Bae J; Sekine K; Hamada K; Tomotake Y; Wennerberg A; Jimbo R; Ichikawa T
    Biomed Mater; 2016 Feb; 11(1):015012. PubMed ID: 26836201
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds.
    Russo A; Bianchi M; Sartori M; Boi M; Giavaresi G; Salter DM; Jelic M; Maltarello MC; Ortolani A; Sprio S; Fini M; Tampieri A; Marcacci M
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):546-554. PubMed ID: 28199046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect.
    Zhang K; Zhou Y; Xiao C; Zhao W; Wu H; Tang J; Li Z; Yu S; Li X; Min L; Yu Z; Wang G; Wang L; Zhang K; Yang X; Zhu X; Tu C; Zhang X
    Sci Adv; 2019 Aug; 5(8):eaax6946. PubMed ID: 31414050
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite.
    Kaito T; Myoui A; Takaoka K; Saito N; Nishikawa M; Tamai N; Ohgushi H; Yoshikawa H
    Biomaterials; 2005 Jan; 26(1):73-9. PubMed ID: 15193882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering.
    Chen X; Meng Y; Wang Y; Du C; Yang C
    J Biomater Sci Polym Ed; 2011; 22(1-3):153-63. PubMed ID: 20546681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.