These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2437257)

  • 21. Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins.
    Nixon RA
    Brain Res; 1980 Oct; 200(1):69-83. PubMed ID: 6158362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow transport rates of cytoskeletal proteins change during regeneration of axotomized retinal neurons in adult rats.
    McKerracher L; Vidal-Sanz M; Aguayo AJ
    J Neurosci; 1990 Feb; 10(2):641-8. PubMed ID: 2106015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slow posttranslational modification of a neurofilament protein.
    Bennett GS; DiLullo C
    J Cell Biol; 1985 May; 100(5):1799-804. PubMed ID: 4039329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation of neurofilament proteins by protein kinase C.
    Sihag RK; Jeng AY; Nixon RA
    FEBS Lett; 1988 Jun; 233(1):181-5. PubMed ID: 3384089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axonal transport of synapsin I-like proteins in rabbit retinal ganglion cells.
    Baitinger C; Willard M
    J Neurosci; 1987 Nov; 7(11):3723-35. PubMed ID: 3119792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential turnover of tubulin and neurofilament proteins in central nervous system neuron terminals.
    Garner JA
    Brain Res; 1988 Aug; 458(2):309-18. PubMed ID: 2463048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The composition and organization of axonally transported proteins in the retinal ganglion cells of the guinea pig.
    Levine J; Willard M
    Brain Res; 1980 Jul; 194(1):137-54. PubMed ID: 6155179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ; Paggi P; Katz MJ
    J Cell Biol; 1992 May; 117(3):607-16. PubMed ID: 1374068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ.
    Jung C; Shea TB
    Cell Motil Cytoskeleton; 1999; 42(3):230-40. PubMed ID: 10098936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental changes in phosphorylation state of neurofilament proteins in the chick embryonic optic nerve.
    Go MJ; Tanaka H; Obata K; Fujita SC
    Dev Biol; 1989 Jul; 134(1):85-102. PubMed ID: 2659412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axonal transport kinetics and posttranslational modification of synapsin I in mouse retinal ganglion cells.
    Petrucci TC; Macioce P; Paggi P
    J Neurosci; 1991 Sep; 11(9):2938-46. PubMed ID: 1715393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the distinctive neurofilament subunits of the soma and axon initial segments in the squid stellate ganglion.
    Tytell M; Pant HC; Gainer H; Hill WD
    J Neurosci Res; 1990 Feb; 25(2):153-61. PubMed ID: 2108256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypophosphorylated neurofilament subunits undergo axonal transport more rapidly than more extensively phosphorylated subunits in situ.
    Jung C; Yabe JT; Lee S; Shea TB
    Cell Motil Cytoskeleton; 2000 Oct; 47(2):120-9. PubMed ID: 11013392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons.
    Nixon RA
    J Neurosci; 1986 May; 6(5):1264-71. PubMed ID: 3012012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged.
    Lasek RJ; Paggi P; Katz MJ
    Brain Res; 1993 Jul; 616(1-2):58-64. PubMed ID: 7689412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity.
    Jung C; Yabe JT; Shea TB
    Brain Res; 2000 Feb; 856(1-2):12-9. PubMed ID: 10677606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation and dephosphorylation of neurofilament proteins in retinal ganglion cell neurons in vivo.
    Nixon RA; Lewis SE
    Adv Exp Med Biol; 1987; 221():167-86. PubMed ID: 3124528
    [No Abstract]   [Full Text] [Related]  

  • 39. Soluble, phosphorylated forms of the high molecular weight neurofilament protein in perikarya of cultured neuronal cells.
    Shea TB; Majocha RE; Marotta CA; Nixon RA
    Neurosci Lett; 1988 Oct; 92(3):291-7. PubMed ID: 2462197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Axonal transport of [35S]methionine labeled proteins in Xenopus optic nerve: phases of transport and the effects of nerve crush on protein patterns.
    Szaro BG; Faulkner LA; Hunt RK; Loh YP
    Brain Res; 1984 Apr; 297(2):337-55. PubMed ID: 6202364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.