BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 24372936)

  • 1. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.
    Belaire JA; Kreakie BJ; Keitt T; Minor E
    Conserv Biol; 2014 Apr; 28(2):541-50. PubMed ID: 24372936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of opportunistic sightings and expert knowledge to predict and compare Whooping Crane stopover habitat.
    Hefley TJ; Baasch DM; Tyre AJ; Blankenship EE
    Conserv Biol; 2015 Oct; 29(5):1337-46. PubMed ID: 25926004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migrating Whooping Cranes avoid wind-energy infrastructure when selecting stopover habitat.
    Pearse AT; Metzger KL; Brandt DA; Shaffer JA; Bidwell MT; Harrell W
    Ecol Appl; 2021 Jul; 31(5):e02324. PubMed ID: 33682273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whooping crane use of riverine stopover sites.
    Baasch DM; Farrell PD; Howlin S; Pearse AT; Farnsworth JM; Smith CB
    PLoS One; 2019; 14(1):e0209612. PubMed ID: 30625185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal management of a multispecies shorebird flyway under sea-level rise.
    Iwamura T; Fuller RA; Possingham HP
    Conserv Biol; 2014 Dec; 28(6):1710-20. PubMed ID: 24975747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of development of wind energy and associated changes in land use on bird densities in upland areas.
    Fernández-Bellon D; Wilson MW; Irwin S; O'Halloran J
    Conserv Biol; 2019 Apr; 33(2):413-422. PubMed ID: 30346052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis).
    Bertram MR; Hamer GL; Hartup BK; Snowden KF; Medeiros MC; Hamer SA
    Parasitology; 2017 Apr; 144(5):629-640. PubMed ID: 27938437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the enteric microflora of captive whooping cranes (Grus americana) and sandhill cranes (Grus canadensis).
    Hoar BM; Whiteside DP; Ward L; Douglas Inglis G; Morck DW
    Zoo Biol; 2007 Mar; 26(2):141-53. PubMed ID: 19360567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reintroduction medicine: whooping cranes in Wisconsin.
    Keller DL; Hartup BK
    Zoo Biol; 2013; 32(6):600-7. PubMed ID: 24027128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrological modelling for siberian crane Grus Leucogeranus stopover sites in northeast China.
    Jiang H; He C; Sheng L; Tang Z; Wen Y; Yan T; Zou C
    PLoS One; 2015; 10(4):e0122687. PubMed ID: 25874552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coccidian Parasites and Conservation Implications for the Endangered Whooping Crane (Grus americana).
    Bertram MR; Hamer GL; Snowden KF; Hartup BK; Hamer SA
    PLoS One; 2015; 10(6):e0127679. PubMed ID: 26061631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diet Shift and Its Impact on Foraging Behavior of Siberian Crane (Grus Leucogeranus) in Poyang Lake.
    Jia Y; Jiao S; Zhang Y; Zhou Y; Lei G; Liu G
    PLoS One; 2013; 8(6):e65843. PubMed ID: 23823943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dilemma of pest suppression in the conservation of endangered species.
    Adler PH; Barzen J; Gray E; Lacy A; Urbanek RP; Converse SJ
    Conserv Biol; 2019 Aug; 33(4):788-796. PubMed ID: 30520153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using stochastic gradient boosting to infer stopover habitat selection and distribution of Hooded Cranes Grus monacha during spring migration in Lindian, Northeast China.
    Cai T; Huettmann F; Guo Y
    PLoS One; 2014; 9(2):e89913. PubMed ID: 24587118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the distribution of migratory bird stopovers to inform landscape-scale siting of wind development.
    Pocewicz A; Estes-Zumpf WA; Andersen MD; Copeland HE; Keinath DA; Griscom HR
    PLoS One; 2013; 8(10):e75363. PubMed ID: 24098379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network approach to prioritize conservation efforts for migratory birds.
    Xu Y; Si Y; Takekawa J; Liu Q; Prins HHT; Yin S; Prosser DJ; Gong P; de Boer WF
    Conserv Biol; 2020 Apr; 34(2):416-426. PubMed ID: 31268188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing risk to birds from industrial wind energy development via paired resource selection models.
    Miller TA; Brooks RP; Lanzone M; Brandes D; Cooper J; O'Malley K; Maisonneuve C; Tremblay J; Duerr A; Katzner T
    Conserv Biol; 2014 Jun; 28(3):745-55. PubMed ID: 24405249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multi-Scale Approach to Investigating the Red-Crowned Crane-Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation.
    Cao M; Xu H; Le Z; Zhu M; Cao Y
    PLoS One; 2015; 10(6):e0129833. PubMed ID: 26065417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Offsets and conservation of the species of the EU habitats and birds directives.
    Regnery B; Couvet D; Kerbiriou C
    Conserv Biol; 2013 Dec; 27(6):1335-43. PubMed ID: 24033535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological evidence that anthropogenic woodlots can substitute for native riparian woodlands as stopover habitat for migrant birds.
    Liu M; Swanson DL
    Physiol Biochem Zool; 2014; 87(1):183-95. PubMed ID: 24457932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.