These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24373132)

  • 21. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics.
    Vandepoele K; Casneuf T; Van de Peer Y
    Genome Biol; 2006; 7(11):R103. PubMed ID: 17090307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A map of open chromatin in human pancreatic islets.
    Gaulton KJ; Nammo T; Pasquali L; Simon JM; Giresi PG; Fogarty MP; Panhuis TM; Mieczkowski P; Secchi A; Bosco D; Berney T; Montanya E; Mohlke KL; Lieb JD; Ferrer J
    Nat Genet; 2010 Mar; 42(3):255-9. PubMed ID: 20118932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cis-regulatory element based gene finding: an application in Arabidopsis thaliana.
    Li Y; Zhu Y; Liu Y; Shu Y; Meng F; Lu Y; Liu B; Bai X; Guo D
    Genome Inform; 2008; 21():177-87. PubMed ID: 19425157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly reproducible ChIP-on-chip analysis to identify genome-wide protein binding and chromatin status in Arabidopsis thaliana.
    Kim JM; To TK; Tanaka M; Endo TA; Matsui A; Ishida J; Robertson FC; Toyoda T; Seki M
    Methods Mol Biol; 2014; 1062():405-26. PubMed ID: 24057379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana.
    Guo L; Chen S; Liu K; Liu Y; Ni L; Zhang K; Zhang L
    Plant Cell Physiol; 2008 Sep; 49(9):1306-15. PubMed ID: 18641404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of regulatory elements involved in expression and induction by sucrose and UV-B light of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b.
    Comelli RN; Gonzalez DH
    Physiol Plant; 2009 Nov; 137(3):213-24. PubMed ID: 19781003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss.
    Lenoir A; Pélissier T; Bousquet-Antonelli C; Deragon JM
    Cytogenet Genome Res; 2005; 110(1-4):441-7. PubMed ID: 16093696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity.
    Song L; Zhang Z; Grasfeder LL; Boyle AP; Giresi PG; Lee BK; Sheffield NC; Gräf S; Huss M; Keefe D; Liu Z; London D; McDaniell RM; Shibata Y; Showers KA; Simon JM; Vales T; Wang T; Winter D; Zhang Z; Clarke ND; Birney E; Iyer VR; Crawford GE; Lieb JD; Furey TS
    Genome Res; 2011 Oct; 21(10):1757-67. PubMed ID: 21750106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Making reporter gene constructs to analyze cis-regulatory elements.
    Bessa J; Gómez-Skarmeta JL
    Methods Mol Biol; 2011; 772():397-408. PubMed ID: 22065451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin.
    Kodama Y; Nagaya S; Shinmyo A; Kato K
    Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq.
    Bajic M; Maher KA; Deal RB
    Methods Mol Biol; 2018; 1675():183-201. PubMed ID: 29052193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel method to predict regulatory regions based on histone mark landscapes in macrophages.
    Nagy G; Dániel B; Jónás D; Nagy L; Barta E
    Immunobiology; 2013 Nov; 218(11):1416-27. PubMed ID: 23973299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico identification and in vivo validation of a set of evolutionary conserved plant root-specific cis-regulatory elements.
    Christ A; Maegele I; Ha N; Nguyen HH; Crespi MD; Maizel A
    Mech Dev; 2013 Jan; 130(1):70-81. PubMed ID: 22504372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin immunoprecipitation to identify global targets of WRKY transcription factor family members involved in plant immunity.
    Roccaro M; Somssich IE
    Methods Mol Biol; 2011; 712():45-58. PubMed ID: 21359799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods.
    Reimer JJ; Turck F
    Methods Mol Biol; 2010; 631():139-60. PubMed ID: 20204874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome wide analysis of Arabidopsis core promoters.
    Molina C; Grotewold E
    BMC Genomics; 2005 Feb; 6():25. PubMed ID: 15733318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lessons from a search for leaf mutants in Arabidopsis thaliana.
    Pérez-Pérez JM; Candela H; Robles P; Quesada V; Ponce MR; Micol JL
    Int J Dev Biol; 2009; 53(8-10):1623-34. PubMed ID: 19247929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Arabidopsis genome: a foundation for plant research.
    Bevan M; Walsh S
    Genome Res; 2005 Dec; 15(12):1632-42. PubMed ID: 16339360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosome landmarks as tools to study the genome of Arabidopsis thaliana.
    Siroky J
    Cytogenet Genome Res; 2008; 120(3-4):202-9. PubMed ID: 18504348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants.
    Saleh A; Alvarez-Venegas R; Avramova Z
    Nat Protoc; 2008; 3(6):1018-25. PubMed ID: 18536649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.