These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 24373158)

  • 21. CRISPR-Cas-mediated targeted genome editing in human cells.
    Yang L; Mali P; Kim-Kiselak C; Church G
    Methods Mol Biol; 2014; 1114():245-67. PubMed ID: 24557908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-based VEGF suppression using paired guide RNAs for treatment of choroidal neovascularization.
    Chung SH; Sin TN; Dang B; Ngo T; Lo T; Lent-Schochet D; Meleppat RK; Zawadzki RJ; Yiu G
    Mol Ther Nucleic Acids; 2022 Jun; 28():613-622. PubMed ID: 35614998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous and endogenous
    Zheng X; Zheng P; Sun J; Kun Z; Ma Y
    Fungal Biol Biotechnol; 2018; 5():2. PubMed ID: 29456867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing.
    Hsieh-Feng V; Yang Y
    aBIOTECH; 2020 Apr; 1(2):123-134. PubMed ID: 36304720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of anti-HIV-1 guide RNA efficacy in cells containing the viral target sequence, corresponding gRNA, and CRISPR/Cas9.
    Allen AG; Chung CH; Worrell SD; Nwaozo G; Madrid R; Mele AR; Dampier W; Nonnemacher MR; Wigdahl B
    Front Genome Ed; 2023; 5():1101483. PubMed ID: 37124096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-cleaving guide RNAs enable pharmacological selection of precise gene editing events in vivo.
    Tiyaboonchai A; Vonada A; Posey J; Pelz C; Wakefield L; Grompe M
    Nat Commun; 2022 Nov; 13(1):7391. PubMed ID: 36450762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize.
    Qi W; Zhu T; Tian Z; Li C; Zhang W; Song R
    BMC Biotechnol; 2016 Aug; 16(1):58. PubMed ID: 27515683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter.
    Li JW; Zeng T; Xu ZZ; Li JJ; Hu H; Yu Q; Zhou L; Zheng RR; Luo J; Wang CY
    Plant Methods; 2022 Mar; 18(1):32. PubMed ID: 35292048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Multiplex Genome Editing Induces Precise, and Self-Ligated Type Mutations in Tomato Plants.
    Hashimoto R; Ueta R; Abe C; Osakabe Y; Osakabe K
    Front Plant Sci; 2018; 9():916. PubMed ID: 30018630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances in Genome Editing Using CRISPR/Cas9.
    Ding Y; Li H; Chen LL; Xie K
    Front Plant Sci; 2016; 7():703. PubMed ID: 27252719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA Pol III promoters-key players in precisely targeted plant genome editing.
    Kor SD; Chowdhury N; Keot AK; Yogendra K; Chikkaputtaiah C; Sudhakar Reddy P
    Front Genet; 2022; 13():989199. PubMed ID: 36685866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes.
    Ma M; Ye AY; Zheng W; Kong L
    Biomed Res Int; 2013; 2013():270805. PubMed ID: 24199189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.
    Sugano SS; Shirakawa M; Takagi J; Matsuda Y; Shimada T; Hara-Nishimura I; Kohchi T
    Plant Cell Physiol; 2014 Mar; 55(3):475-81. PubMed ID: 24443494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of a Single Transcriptional Unit for Expression of Cas9 and Single-guide RNAs for Genome Editing in Plants.
    Tang X; Zhong Z; Zheng X; Zhang Y
    Bio Protoc; 2017 Sep; 7(17):e2546. PubMed ID: 34541195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Modification of CRISPR
    Schubert MS; Cedrone E; Neun B; Behlke MA; Dobrovolskaia MA
    J Cytokine Biol; 2018; 3(1):. PubMed ID: 30225466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PCR-mediated One-day Synthesis of Guide RNA for the CRISPR/Cas9 System.
    Hassan N; Easmin F; Ekino K; Harashima S
    Bio Protoc; 2021 Jul; 11(13):e4082. PubMed ID: 34327279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9.
    Hara S; Tamano M; Yamashita S; Kato T; Saito T; Sakuma T; Yamamoto T; Inui M; Takada S
    Sci Rep; 2015 Jun; 5():11221. PubMed ID: 26057433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.