These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 2437361)
1. [Determination of glutathione reductase and superoxide dismutase activities in a biochemical autoanalyzer]. Verbolovich VP; Podgornaia LM Lab Delo; 1987; (2):17-20. PubMed ID: 2437361 [No Abstract] [Full Text] [Related]
2. The activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in erythrocytes of rats with experimental neoplastic disease. Batko J; Warchoł T; Karoń H Acta Biochim Pol; 1996; 43(2):403-5. PubMed ID: 8862187 [TBL] [Abstract][Full Text] [Related]
3. [Complex determination of superoxide dismutase and glutathione reductase activity in the erythrocytes of patients with chronic diseases of the liver]. Makarenko EV Lab Delo; 1988; (11):48-50. PubMed ID: 2463419 [No Abstract] [Full Text] [Related]
5. [Activities of superoxide dismutase, catalase, glutathione peroxidase and reductase in umbilical cord blood of newborns from mothers smoking during pregnancy]. Chełchowska M; Laskowska-Klita T; Leibschang J Przegl Lek; 2006; 63(10):970-3. PubMed ID: 17288196 [TBL] [Abstract][Full Text] [Related]
6. Glutathione redox cycle enzyme activities in erythrocytes of multiple sclerosis patients. Di Ilio C; Arduini A; Del Boccio G; La Rovere G; Federici G Clin Physiol Biochem; 1986; 4(2):120-4. PubMed ID: 3698470 [TBL] [Abstract][Full Text] [Related]
7. Effect of prolonged storage on the activities of superoxide dismutase, glutathione reductase, and glutathione peroxidase. Abiaka C; Al-Awadi F; Olusi S Clin Chem; 2000 Apr; 46(4):566-7. PubMed ID: 10759483 [No Abstract] [Full Text] [Related]
8. Antioxidant status of Japanese quail: comparison of atherosclerosis-susceptible and -resistant strains. Godin DV; Cheng KM; Garnett ME; Nichols CR Can J Cardiol; 1994 Mar; 10(2):221-8. PubMed ID: 8143223 [TBL] [Abstract][Full Text] [Related]
9. [The state of the antioxidative protective system of erythrocytes during overheating]. Bondarev DP; Kozlov NB; Stunzhas NM Vopr Med Khim; 1985; 31(6):27-30. PubMed ID: 4090382 [TBL] [Abstract][Full Text] [Related]
10. Red blood cell metabolism in experimental animals: pentose phosphate pathway, antioxidant enzymes and glutathione. Suzuki T; Agar NS; Suzuki M Jikken Dobutsu; 1985 Oct; 34(4):353-66. PubMed ID: 3910443 [No Abstract] [Full Text] [Related]
16. Different effects of exercise tests on the antioxidant enzyme activities in lymphocytes and neutrophils. Tauler P; Aguiló A; Gimeno I; Guix P; Tur JA; Pons A J Nutr Biochem; 2004 Aug; 15(8):479-84. PubMed ID: 15302083 [TBL] [Abstract][Full Text] [Related]
17. [State of the antioxidant system during corazole kindling in rats]. Tupeev IR; Bordiukov MM; Kryzhanovskiĭ GN; Nikushkin EV Biull Eksp Biol Med; 1987 Aug; 104(8):167-9. PubMed ID: 3620672 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant defence system of erythrocytes in relation to Agrobacterium tumefaciens lipopolysaccharide administration in mice. Haldar S; Basu A; Chakraborty K; Addya S; Santra M; Chatterjee GC Indian J Exp Biol; 1984 Mar; 22(3):123-5. PubMed ID: 6519684 [No Abstract] [Full Text] [Related]
19. Skin diseases and enzymatic antioxidant activity among workers exposed to pesticides. Amer M; Metwalli M; Abu el-Magd Y East Mediterr Health J; 2002; 8(2-3):363-73. PubMed ID: 15339126 [TBL] [Abstract][Full Text] [Related]
20. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase. Ye M; English AM Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]