These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24373804)

  • 1. Somatotopic reorganization of hand representation in bilateral arm amputees with or without special foot movement skill.
    Yu XJ; He HJ; Zhang QW; Zhao F; Zee CS; Zhang SZ; Gong XY
    Brain Res; 2014 Feb; 1546():9-17. PubMed ID: 24373804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activation of the cortical hand area by toe tapping in two bilateral upper-extremities amputees with extraordinary foot movement skill.
    Yu X; Zhang S; Liu H; Chen Y
    Magn Reson Imaging; 2006 Jan; 24(1):45-50. PubMed ID: 16410177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain.
    Karl A; Mühlnickel W; Kurth R; Flor H
    Pain; 2004 Jul; 110(1-2):90-102. PubMed ID: 15275756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping phantom movement representations in the motor cortex of amputees.
    Mercier C; Reilly KT; Vargas CD; Aballea A; Sirigu A
    Brain; 2006 Aug; 129(Pt 8):2202-10. PubMed ID: 16844715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention.
    Sacco K; Cauda F; D'Agata F; Mate D; Duca S; Geminiani G
    Brain Res; 2009 Nov; 1297():124-34. PubMed ID: 19703428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical areas involved in virtual movement of phantom limbs: comparison with normal subjects.
    Roux FE; Lotterie JA; Cassol E; Lazorthes Y; Sol JC; Berry I
    Neurosurgery; 2003 Dec; 53(6):1342-52; discussion 1352-3. PubMed ID: 14633300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI evaluation of somatotopic representation in human primary motor cortex.
    Lotze M; Erb M; Flor H; Huelsmann E; Godde B; Grodd W
    Neuroimage; 2000 May; 11(5 Pt 1):473-81. PubMed ID: 10806033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakdown of inhibitory effects induced by foot motor imagery on hand motor area in lower-limb amputees.
    Marconi B; Koch G; Pecchioli C; Cavallari P; Caltagirone C
    Clin Neurophysiol; 2007 Nov; 118(11):2468-78. PubMed ID: 17905652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study.
    Mizuguchi N; Nakata H; Kanosue K
    Neurosci Lett; 2014 Oct; 581():69-74. PubMed ID: 25150928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The motor cortex and its role in phantom limb phenomena.
    Reilly KT; Sirigu A
    Neuroscientist; 2008 Apr; 14(2):195-202. PubMed ID: 17989169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional MRI evidence for adult motor cortex plasticity during motor skill learning.
    Karni A; Meyer G; Jezzard P; Adams MM; Turner R; Ungerleider LG
    Nature; 1995 Sep; 377(6545):155-8. PubMed ID: 7675082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modulation of motor network connectivity during movements of the upper and lower limbs.
    Volz LJ; Eickhoff SB; Pool EM; Fink GR; Grefkes C
    Neuroimage; 2015 Oct; 119():44-53. PubMed ID: 26095089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined movement of multi-joint muscles activates a smaller area compared to the sum of areas activated by respective single-joint muscles after restoration of paresis.
    Shinoura N; Suzuki Y; Yamada R; Tabei Y; Takahashi M; Yagi K
    Neurocase; 2010 Apr; 16(2):175-81. PubMed ID: 19927259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study.
    Jaillard A; Martin CD; Garambois K; Lebas JF; Hommel M
    Brain; 2005 May; 128(Pt 5):1122-38. PubMed ID: 15728652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging.
    Rao SM; Binder JR; Hammeke TA; Bandettini PA; Bobholz JA; Frost JA; Myklebust BM; Jacobson RD; Hyde JS
    Neurology; 1995 May; 45(5):919-24. PubMed ID: 7746407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remodeling of cortical activity for motor control following upper limb loss.
    Williams L; Pirouz N; Mizelle JC; Cusack W; Kistenberg R; Wheaton LA
    Clin Neurophysiol; 2016 Sep; 127(9):3128-3134. PubMed ID: 27472549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent hand motor commands in the amputees' brain.
    Reilly KT; Mercier C; Schieber MH; Sirigu A
    Brain; 2006 Aug; 129(Pt 8):2211-23. PubMed ID: 16799174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of the motor cortex in patients with brain tumors and arteriovenous malformations: a functional MR study.
    Tuntiyatorn L; Wuttiplakorn L; Laohawiriyakamol K
    J Med Assoc Thai; 2011 Sep; 94(9):1134-40. PubMed ID: 21970205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral and electrophysiological evidence of motor cortex activation related to an amputated limb: a multisensorial approach.
    Touzalin-Chretien P; Ehrler S; Dufour A
    J Cogn Neurosci; 2009 Nov; 21(11):2207-16. PubMed ID: 19296727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.