BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24373883)

  • 1. Adaptation to background light enables contrast coding at rod bipolar cell synapses.
    Ke JB; Wang YV; Borghuis BG; Cembrowski MS; Riecke H; Kath WL; Demb JB; Singer JH
    Neuron; 2014 Jan; 81(2):388-401. PubMed ID: 24373883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light Adaptation of Retinal Rod Bipolar Cells.
    Griffis KG; Fehlhaber KE; Rieke F; Sampath AP
    J Neurosci; 2023 Jun; 43(24):4379-4389. PubMed ID: 37208176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine D1 receptor activation contributes to light-adapted changes in retinal inhibition to rod bipolar cells.
    Flood MD; Moore-Dotson JM; Eggers ED
    J Neurophysiol; 2018 Aug; 120(2):867-879. PubMed ID: 29847232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic Transfer between Rod and Cone Pathways Mediated by AII Amacrine Cells in the Mouse Retina.
    Graydon CW; Lieberman EE; Rho N; Briggman KL; Singer JH; Diamond JS
    Curr Biol; 2018 Sep; 28(17):2739-2751.e3. PubMed ID: 30122532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina.
    Zhou Y; Tencerová B; Hartveit E; Veruki ML
    J Neurophysiol; 2016 Jan; 115(1):389-403. PubMed ID: 26561610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional maturation of the rod bipolar to AII-amacrine cell ribbon synapse in the mouse retina.
    Kim MH; Strazza P; Puthussery T; Gross OP; Taylor WR; von Gersdorff H
    Cell Rep; 2023 Nov; 42(11):113440. PubMed ID: 37976158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine D1 and D4 receptors contribute to light adaptation in ON-sustained retinal ganglion cells.
    Flood MD; Eggers ED
    J Neurophysiol; 2021 Dec; 126(6):2039-2052. PubMed ID: 34817291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence and segregation of the multiple rod pathways in mammalian retina.
    Völgyi B; Deans MR; Paul DL; Bloomfield SA
    J Neurosci; 2004 Dec; 24(49):11182-92. PubMed ID: 15590935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancient origin of the rod bipolar cell pathway in the vertebrate retina.
    Hellevik AM; Mardoum P; Hahn J; Kölsch Y; D'Orazi FD; Suzuki SC; Godinho L; Lawrence O; Rieke F; Shekhar K; Sanes JR; Baier H; Baden T; Wong RO; Yoshimatsu T
    Nat Ecol Evol; 2024 Jun; 8(6):1165-1179. PubMed ID: 38627529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina.
    Jin NG; Chuang AZ; Masson PJ; Ribelayga CP
    J Physiol; 2015 Apr; 593(7):1597-631. PubMed ID: 25616058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition.
    Szikra T; Trenholm S; Drinnenberg A; Jüttner J; Raics Z; Farrow K; Biel M; Awatramani G; Clark DA; Sahel JA; da Silveira RA; Roska B
    Nat Neurosci; 2014 Dec; 17(12):1728-35. PubMed ID: 25344628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal output changes qualitatively with every change in ambient illuminance.
    Tikidji-Hamburyan A; Reinhard K; Seitter H; Hovhannisyan A; Procyk CA; Allen AE; Schenk M; Lucas RJ; Münch TA
    Nat Neurosci; 2015 Jan; 18(1):66-74. PubMed ID: 25485757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Ca2+ signaling drives ribbon-independent synaptic transmission at rod bipolar cell synapses.
    Mehta B; Ke JB; Zhang L; Baden AD; Markowitz AL; Nayak S; Briggman KL; Zenisek D; Singer JH
    J Neurosci; 2014 Apr; 34(18):6233-44. PubMed ID: 24790194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.
    Park SJ; Kim IJ; Looger LL; Demb JB; Borghuis BG
    J Neurosci; 2014 Mar; 34(11):3976-81. PubMed ID: 24623775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The AII amacrine cell connectome: a dense network hub.
    Marc RE; Anderson JR; Jones BW; Sigulinsky CL; Lauritzen JS
    Front Neural Circuits; 2014; 8():104. PubMed ID: 25237297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.
    Choi H; Zhang L; Cembrowski MS; Sabottke CF; Markowitz AL; Butts DA; Kath WL; Singer JH; Riecke H
    J Neurophysiol; 2014 Sep; 112(6):1491-504. PubMed ID: 25008417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina.
    Grimes WN; Schwartz GW; Rieke F
    Neuron; 2014 Apr; 82(2):460-73. PubMed ID: 24742466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual stimulation switches the polarity of excitatory input to starburst amacrine cells.
    Vlasits AL; Bos R; Morrie RD; Fortuny C; Flannery JG; Feller MB; Rivlin-Etzion M
    Neuron; 2014 Sep; 83(5):1172-84. PubMed ID: 25155960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cells.
    Stafford BK; Manookin MB; Singer JH; Demb JB
    J Physiol; 2014 Nov; 592(22):4877-89. PubMed ID: 25217374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function and Circuitry of VIP+ Interneurons in the Mouse Retina.
    Park SJ; Borghuis BG; Rahmani P; Zeng Q; Kim IJ; Demb JB
    J Neurosci; 2015 Jul; 35(30):10685-700. PubMed ID: 26224854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.