These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 24374110)
1. TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization. Diaz A; Puig-Butillé JA; Valera A; Muñoz C; Costa D; Garcia-Herrera A; Carrera C; Sole F; Malvehy J; Puig S; Alos L J Mol Diagn; 2014 Mar; 16(2):198-206. PubMed ID: 24374110 [TBL] [Abstract][Full Text] [Related]
2. CCND1 copy number increase and cyclin D1 expression in acral melanoma: a comparative study of fluorescence in situ hybridization and immunohistochemistry in a Chinese cohort. Liu J; Yu W; Gao F; Qi S; Du J; Ma X; Zhang Y; Zheng J; Su J Diagn Pathol; 2021 Jul; 16(1):60. PubMed ID: 34225728 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence in situ hybridisation as an ancillary tool in the diagnosis of acral melanoma: a review of 44 cases. Su J; Yu W; Liu J; Zheng J; Huang S; Wang Y; Qi S; Ma X; Chen J; Zhang Y Pathology; 2017 Dec; 49(7):740-749. PubMed ID: 29037804 [TBL] [Abstract][Full Text] [Related]
4. Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe. Gammon B; Beilfuss B; Guitart J; Gerami P Am J Surg Pathol; 2012 Jan; 36(1):81-8. PubMed ID: 21989344 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. Gerami P; Mafee M; Lurtsbarapa T; Guitart J; Haghighat Z; Newman M Arch Dermatol; 2010 Mar; 146(3):273-8. PubMed ID: 20231497 [TBL] [Abstract][Full Text] [Related]
6. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Gerami P; Li G; Pouryazdanparast P; Blondin B; Beilfuss B; Slenk C; Du J; Guitart J; Jewell S; Pestova K Am J Surg Pathol; 2012 Jun; 36(6):808-17. PubMed ID: 22588064 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence in situ hybridization as an ancillary method for the distinction of desmoplastic melanomas from sclerosing melanocytic nevi. Gerami P; Beilfuss B; Haghighat Z; Fang Y; Jhanwar S; Busam KJ J Cutan Pathol; 2011 Apr; 38(4):329-34. PubMed ID: 21323721 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence in situ hybridization (FISH) analysis of melanocytic nevi and melanomas: sensitivity, specificity, and lack of association with sentinel node status. Fang Y; Dusza S; Jhanwar S; Busam KJ Int J Surg Pathol; 2012 Oct; 20(5):434-40. PubMed ID: 22561674 [TBL] [Abstract][Full Text] [Related]
10. Malignant Melanoma of the Nail Apparatus: A Fluorescence In Situ Hybridization Analysis of 7 Cases. Romano RC; Shon W; Sukov WR Int J Surg Pathol; 2016 Sep; 24(6):512-8. PubMed ID: 27185405 [TBL] [Abstract][Full Text] [Related]
12. Distinguishing epithelioid blue nevus from blue nevus-like cutaneous melanoma metastasis using fluorescence in situ hybridization. Pouryazdanparast P; Newman M; Mafee M; Haghighat Z; Guitart J; Gerami P Am J Surg Pathol; 2009 Sep; 33(9):1396-400. PubMed ID: 19606012 [TBL] [Abstract][Full Text] [Related]
13. Telomerase reverse transcriptase immunohistochemical expression is sensitive but not specific for TERT gene amplification in acral melanoma. Cho WC; Li W; Gu J; Wang WL; Ning J; Sfamenos S; Gill P; Nagarajan P; Curry JL; Lazar AJ; Prieto VG; Torres-Cabala CA; Aung PP J Cutan Pathol; 2023 Sep; 50(9):845-851. PubMed ID: 37400233 [TBL] [Abstract][Full Text] [Related]
14. Distinction of conjunctival melanocytic nevi from melanomas by fluorescence in situ hybridization. Busam KJ; Fang Y; Jhanwar SC; Pulitzer MP; Marr B; Abramson DH J Cutan Pathol; 2010 Feb; 37(2):196-203. PubMed ID: 20100177 [TBL] [Abstract][Full Text] [Related]
15. Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization. Glatz-Krieger K; Pache M; Tapia C; Fuchs A; Savic S; Glatz D; Mihatsch M; Meyer P Virchows Arch; 2006 Sep; 449(3):328-33. PubMed ID: 16523260 [TBL] [Abstract][Full Text] [Related]
16. Four-color fluorescence in-situ hybridization is useful to assist to distinguish early stage acral and cutaneous melanomas from dysplastic junctional or compound nevus. Lai Y; Wu Y; Liu R; Lu A; Zhou L; Jia L; Diao X; Li Z Diagn Pathol; 2020 May; 15(1):51. PubMed ID: 32393283 [TBL] [Abstract][Full Text] [Related]
17. Classifying melanocytic tumors based on DNA copy number changes. Bastian BC; Olshen AB; LeBoit PE; Pinkel D Am J Pathol; 2003 Nov; 163(5):1765-70. PubMed ID: 14578177 [TBL] [Abstract][Full Text] [Related]
18. Application of fluorescence in situ hybridization as a diagnostic tool in melanocytic lesions, using paraffin wax-embedded tissues and imprint-cytology specimens. Abásolo A; Vargas MT; Ríos-Martín JJ; Trigo I; Arjona A; González-Cámpora R Clin Exp Dermatol; 2012 Dec; 37(8):838-43. PubMed ID: 22731835 [TBL] [Abstract][Full Text] [Related]
19. Telomerase Reverse Transcriptase Protein Expression Is More Frequent in Acral Lentiginous Melanoma Than in Other Types of Cutaneous Melanoma. Cho WC; Wang WL; Milton DR; Ingram DR; Nagarajan P; Curry JL; Ivan D; Lazar AJ; Hwu WJ; Prieto VG; Torres-Cabala CA; Aung PP Arch Pathol Lab Med; 2021 Jul; 145(7):842-850. PubMed ID: 33053175 [TBL] [Abstract][Full Text] [Related]
20. Detection of copy number variations in melanocytic lesions utilising array based comparative genomic hybridisation. Mesbah Ardakani N; Thomas C; Robinson C; Mina K; Harvey NT; Amanuel B; Wood BA Pathology; 2017 Apr; 49(3):285-291. PubMed ID: 28274670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]