These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 24374224)
1. Inhaled Solid Lipid Microparticles to target alveolar macrophages for tuberculosis. Maretti E; Rossi T; Bondi M; Croce MA; Hanuskova M; Leo E; Sacchetti F; Iannuccelli V Int J Pharm; 2014 Feb; 462(1-2):74-82. PubMed ID: 24374224 [TBL] [Abstract][Full Text] [Related]
2. Isoniazid-gelatin conjugate microparticles containing rifampicin for the treatment of tuberculosis. Manca ML; Cassano R; Valenti D; Trombino S; Ferrarelli T; Picci N; Fadda AM; Manconi M J Pharm Pharmacol; 2013 Sep; 65(9):1302-11. PubMed ID: 23927468 [TBL] [Abstract][Full Text] [Related]
3. Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin. Pai RV; Jain RR; Bannalikar AS; Menon MD J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):179-95. PubMed ID: 26406162 [TBL] [Abstract][Full Text] [Related]
4. Dry-Powder Inhaler Formulation of Rifampicin: An Improved Targeted Delivery System for Alveolar Tuberculosis. Rawal T; Kremer L; Halloum I; Butani S J Aerosol Med Pulm Drug Deliv; 2017 Dec; 30(6):388-398. PubMed ID: 28510480 [TBL] [Abstract][Full Text] [Related]
5. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. Ohashi K; Kabasawa T; Ozeki T; Okada H J Control Release; 2009 Apr; 135(1):19-24. PubMed ID: 19121349 [TBL] [Abstract][Full Text] [Related]
6. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Sharma R; Saxena D; Dwivedi AK; Misra A Pharm Res; 2001 Oct; 18(10):1405-10. PubMed ID: 11697465 [TBL] [Abstract][Full Text] [Related]
8. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Rawal T; Parmar R; Tyagi RK; Butani S Colloids Surf B Biointerfaces; 2017 Jun; 154():321-330. PubMed ID: 28363192 [TBL] [Abstract][Full Text] [Related]
9. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. Hirota K; Hasegawa T; Nakajima T; Inagawa H; Kohchi C; Soma G; Makino K; Terada H J Control Release; 2010 Mar; 142(3):339-46. PubMed ID: 19951729 [TBL] [Abstract][Full Text] [Related]
10. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Maretti E; Costantino L; Buttini F; Rustichelli C; Leo E; Truzzi E; Iannuccelli V Drug Deliv Transl Res; 2019 Feb; 9(1):298-310. PubMed ID: 30484257 [TBL] [Abstract][Full Text] [Related]
11. Microparticles of rifampicin: comparison of pulmonary route with oral route for drug uptake by alveolar macrophages, phagocytosis activity and toxicity study in albino rats. Parikh R; Patel L; Dalwadi S Drug Deliv; 2014 Sep; 21(6):406-11. PubMed ID: 24215141 [TBL] [Abstract][Full Text] [Related]
12. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Song X; Lin Q; Guo L; Fu Y; Han J; Ke H; Sun X; Gong T; Zhang Z Pharm Res; 2015 May; 32(5):1741-51. PubMed ID: 25407545 [TBL] [Abstract][Full Text] [Related]
13. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Maretti E; Costantino L; Rustichelli C; Leo E; Croce MA; Buttini F; Truzzi E; Iannuccelli V Int J Pharm; 2017 Aug; 528(1-2):440-451. PubMed ID: 28624659 [TBL] [Abstract][Full Text] [Related]
14. Inhaled microparticles of antitubercular antibiotic for in vitro and in vivo alveolar macrophage targeting and activation of phagocytosis. Parikh R; Dalwadi S; Aboti P; Patel L J Antibiot (Tokyo); 2014 May; 67(5):387-94. PubMed ID: 24569669 [TBL] [Abstract][Full Text] [Related]
15. Lipid microsphere formulation containing rifampicin targets alveolar macrophages. Takenaga M; Ohta Y; Tokura Y; Hamaguchi A; Igarashi R; Disratthakit A; Doi N Drug Deliv; 2008; 15(3):169-75. PubMed ID: 18379929 [TBL] [Abstract][Full Text] [Related]
16. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Makino K; Nakajima T; Shikamura M; Ito F; Ando S; Kochi C; Inagawa H; Soma G; Terada H Colloids Surf B Biointerfaces; 2004 Jul; 36(1):35-42. PubMed ID: 15261021 [TBL] [Abstract][Full Text] [Related]
17. Inhalable solid lipid nanoparticles of levofloxacin for potential tuberculosis treatment. Paul PK; Nakpheng T; Paliwal H; Prem Ananth K; Srichana T Int J Pharm; 2024 Jul; 660():124309. PubMed ID: 38848797 [TBL] [Abstract][Full Text] [Related]
18. Pharmacokinetics of Inhaled Rifampicin Porous Particles for Tuberculosis Treatment: Insight into Rifampicin Absorption from the Lungs of Guinea Pigs. Garcia Contreras L; Sung J; Ibrahim M; Elbert K; Edwards D; Hickey A Mol Pharm; 2015 Aug; 12(8):2642-50. PubMed ID: 25942002 [TBL] [Abstract][Full Text] [Related]
19. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Pandey R; Khuller GK Tuberculosis (Edinb); 2005 Jul; 85(4):227-34. PubMed ID: 15922668 [TBL] [Abstract][Full Text] [Related]
20. Preparation and evaluation of poly(lactic-co-glycolic acid) microparticles as a carrier for pulmonary delivery of recombinant human interleukin-2: II. In vitro studies on aerodynamic properties of dry powder inhaler formulations. Devrim B; Bozkır A; Canefe K Drug Dev Ind Pharm; 2011 Nov; 37(11):1376-86. PubMed ID: 21548727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]