BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24374364)

  • 1. Disruption of microalgal cells using high-frequency focused ultrasound.
    Wang M; Yuan W; Jiang X; Jing Y; Wang Z
    Bioresour Technol; 2014 Feb; 153():315-21. PubMed ID: 24374364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgal cell disruption in a high-power ultrasonic flow system.
    Wang M; Yuan W
    Bioresour Technol; 2015 Oct; 193():171-7. PubMed ID: 26133474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgal cell disruption via ultrasonic nozzle spraying.
    Wang M; Yuan W
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1111-22. PubMed ID: 25369896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical cell disruption for lipid extraction from microalgal biomass.
    Halim R; Rupasinghe TW; Tull DL; Webley PA
    Bioresour Technol; 2013 Jul; 140():53-63. PubMed ID: 23672939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.
    Wang M; Yuan W
    Ultrason Sonochem; 2016 Jan; 28():7-14. PubMed ID: 26384877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption.
    Wang M; Yuan W; Hale A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1184-95. PubMed ID: 26660670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic cavitation for disruption of microalgae.
    Greenly JM; Tester JW
    Bioresour Technol; 2015 May; 184():276-279. PubMed ID: 25435064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency.
    Keris-Sen UD; Sen U; Soydemir G; Gurol MD
    Bioresour Technol; 2014; 152():407-13. PubMed ID: 24321606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production.
    Brennan L; Blanco Fernández A; Mostaert AS; Owende P
    J Microbiol Methods; 2012 Aug; 90(2):137-43. PubMed ID: 22521923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force and energy requirement for microalgal cell disruption: an atomic force microscope evaluation.
    Lee AK; Lewis DM; Ashman PJ
    Bioresour Technol; 2013 Jan; 128():199-206. PubMed ID: 23196239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass.
    Huang WC; Kim JD
    Bioresour Technol; 2013 Dec; 149():579-81. PubMed ID: 24128606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method.
    Araujo GS; Matos LJ; Fernandes JO; Cartaxo SJ; Gonçalves LR; Fernandes FA; Farias WR
    Ultrason Sonochem; 2013 Jan; 20(1):95-8. PubMed ID: 22938999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass.
    Olmstead IL; Kentish SE; Scales PJ; Martin GJ
    Bioresour Technol; 2013 Nov; 148():615-9. PubMed ID: 24080444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of thin- and thick-wall microalgae using high pressure gases: Effects of gas species, pressure and treatment duration on the extraction of proteins and carotenoids.
    Yong TC; Chiu PH; Chen CH; Hung CH; Chen CN
    J Biosci Bioeng; 2020 Apr; 129(4):502-507. PubMed ID: 31732260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae.
    Govender T; Ramanna L; Rawat I; Bux F
    Bioresour Technol; 2012 Jun; 114():507-11. PubMed ID: 22464420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow rate and duty cycle effects in lysis of Chlamydomonas reinhardtii using high-energy pulsed focused ultrasound.
    Riesberg G; Bigelow TA; Stessman DJ; Spalding MH; Yao L; Wang T; Xu J
    J Acoust Soc Am; 2014 Jun; 135(6):3632-8. PubMed ID: 24916410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.
    Bigelow TA; Xu J; Stessman DJ; Yao L; Spalding MH; Wang T
    Ultrason Sonochem; 2014 May; 21(3):1258-64. PubMed ID: 24355286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of microalgae cell disruption by ultrasonic treatment.
    Gerde JA; Montalbo-Lomboy M; Yao L; Grewell D; Wang T
    Bioresour Technol; 2012 Dec; 125():175-81. PubMed ID: 23026331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability.
    Cirulis JT; Strasser BC; Scott JA; Ross GM
    Cytometry A; 2012 Jul; 81(7):618-26. PubMed ID: 22648989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.