These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24374720)
1. Genotoxic evaluation in Oreochromis niloticus (Fish: Characidae) of recombinant spore-crystal complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis. Freire IS; Miranda-Vilela AL; Fascineli ML; Oliveira-Filho EC; Martins ES; Monnerat RG; Grisolia CK Ecotoxicology; 2014 Mar; 23(2):267-72. PubMed ID: 24374720 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of cytotoxicity, genotoxicity and hematotoxicity of the recombinant spore-crystal complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss mice. de Souza Freire I; Miranda-Vilela AL; Barbosa LC; Martins ES; Monnerat RG; Grisolia CK Toxins (Basel); 2014 Sep; 6(10):2872-85. PubMed ID: 25268978 [TBL] [Abstract][Full Text] [Related]
3. Hematotoxicity and genotoxicity evaluations in Swiss mice intraperitoneally exposed to Bacillus thuringiensis (var kurstaki) spore crystals genetically modified to express individually Cry1Aa, Cry1Ab, Cry1Ac, or Cry2Aa. Mezzomo BP; Miranda-Vilela AL; Barbosa LC; Albernaz VL; Grisolia CK Environ Toxicol; 2016 Aug; 31(8):970-8. PubMed ID: 25899034 [TBL] [Abstract][Full Text] [Related]
4. Acute toxicity and cytotoxicity of Bacillus thuringiensis and Bacillus sphaericus strains on fish and mouse bone marrow. Grisolia CK; Oliveira-Filho EC; Ramos FR; Lopes MC; Muniz DH; Monnerat RG Ecotoxicology; 2009 Jan; 18(1):22-6. PubMed ID: 18670879 [TBL] [Abstract][Full Text] [Related]
5. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
6. Bacillus thuringiensis toxins: an overview of their biocidal activity. Palma L; Muñoz D; Berry C; Murillo J; Caballero P Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092 [TBL] [Abstract][Full Text] [Related]
9. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Tabashnik BE; Unnithan GC; Masson L; Crowder DW; Li X; Carrière Y Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11889-94. PubMed ID: 19581574 [TBL] [Abstract][Full Text] [Related]
10. Single cysteine substitution in Bacillus thuringiensis Cry7Ba1 improves the crystal solubility and produces toxicity to Plutella xylostella larvae. Peng D; Wang F; Li N; Zhang Z; Song R; Zhu Z; Ruan L; Sun M Environ Microbiol; 2011 Oct; 13(10):2820-31. PubMed ID: 21895913 [TBL] [Abstract][Full Text] [Related]
11. Susceptibility of agricultural pests of regional importance in South America to a Bacillus thuringiensis Cry1Ia protein. Berretta MF; Pedarros AS; Sauka DH; Pérez MP; Onco MI; Benintende GB J Invertebr Pathol; 2020 May; 172():107354. PubMed ID: 32194030 [TBL] [Abstract][Full Text] [Related]
12. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523 [TBL] [Abstract][Full Text] [Related]
13. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Tiewsiri K; Wang P Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14037-42. PubMed ID: 21844358 [TBL] [Abstract][Full Text] [Related]
14. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved. Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760 [TBL] [Abstract][Full Text] [Related]
15. Bacillus thuringiensis Cry1A toxins exert toxicity by multiple pathways in insects. Wang S; Kain W; Wang P Insect Biochem Mol Biol; 2018 Nov; 102():59-66. PubMed ID: 30278206 [TBL] [Abstract][Full Text] [Related]
16. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Valtierra-de-Luis D; Villanueva M; Lai L; Williams T; Caballero P Toxins (Basel); 2020 May; 12(6):. PubMed ID: 32485828 [No Abstract] [Full Text] [Related]
17. Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification/internal gelation method. García-Gutiérrez K; Poggi-Varaldo HM; Esparza-García F; Ibarra-Rendón J; Barrera-Cortés J Bioprocess Biosyst Eng; 2011 Aug; 34(6):701-8. PubMed ID: 21344251 [TBL] [Abstract][Full Text] [Related]
18. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. Rubio-Infante N; Moreno-Fierros L J Appl Toxicol; 2016 May; 36(5):630-48. PubMed ID: 26537666 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization and genetic diversity of insecticidal crystal protein genes in native Bacillus thuringiensis isolates. Mahadeva Swamy HM; Asokan R; Mahmood R; Nagesha SN Curr Microbiol; 2013 Apr; 66(4):323-30. PubMed ID: 23207696 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Bacillus thuringiensis isolates and their differential toxicity against Helicoverpa armigera populations. Anitha D; Kumar NS; Vijayan D; Ajithkumar K; Gurusubramanian G J Basic Microbiol; 2011 Feb; 51(1):107-14. PubMed ID: 21077117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]