BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24374866)

  • 1. Binding dynamics of targeted microbubbles in response to modulated acoustic radiation force.
    Wang S; Hossack JA; Klibanov AL; Mauldin FW
    Phys Med Biol; 2014 Jan; 59(2):465-84. PubMed ID: 24374866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results.
    Wang S; Wang CY; Unnikrishnan S; Klibanov AL; Hossack JA; Mauldin FW
    Invest Radiol; 2015 Nov; 50(11):772-84. PubMed ID: 26135018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time targeted molecular imaging using singular value spectra properties to isolate the adherent microbubble signal.
    Mauldin FW; Dhanaliwala AH; Patil AV; Hossack JA
    Phys Med Biol; 2012 Aug; 57(16):5275-93. PubMed ID: 22853933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Validation of Modulated Acoustic Radiation Force-Based Imaging in Murine Model of Abdominal Aortic Aneurysm Using VEGFR-2-Targeted Microbubbles.
    Huang Y; Herbst EB; Xie Y; Yin L; Islam ZH; Kent EW; Wang B; Klibanov AL; Hossack JA
    Invest Radiol; 2023 Dec; 58(12):865-873. PubMed ID: 37433074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-based measurement of molecular marker concentration in large blood vessels: a feasibility study.
    Wang S; Mauldin FW; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2015 Jan; 41(1):222-34. PubMed ID: 25308943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining radiation force with cavitation for enhanced sonothrombolysis.
    Chuang YH; Cheng PW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):97-104. PubMed ID: 23287916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification.
    Rychak JJ; Klibanov AL; Hossack JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):421-33. PubMed ID: 15857050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.
    Garbin V; Overvelde M; Dollet B; de Jong N; Lohse D; Versluis M
    Phys Med Biol; 2011 Oct; 56(19):6161-77. PubMed ID: 21878709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force.
    Bezer JH; Koruk H; Rowlands CJ; Choi JJ
    Ultrasound Med Biol; 2020 Dec; 46(12):3327-3338. PubMed ID: 32919812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superharmonic microbubble Doppler effect in ultrasound therapy.
    Pouliopoulos AN; Choi JJ
    Phys Med Biol; 2016 Aug; 61(16):6154-71. PubMed ID: 27469394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravascular ultrasound catheter to enhance microbubble-based drug delivery via acoustic radiation force.
    Kilroy JP; Klibanov AL; Wamhoff BR; Hossack J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2156-66. PubMed ID: 23143566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI.
    Wu CH; Liu HL; Ho CT; Hsu PH; Fan CH; Yeh CK; Kang ST; Chen WS; Wang FN; Peng HH
    J Magn Reson Imaging; 2020 Jan; 51(1):311-318. PubMed ID: 31125166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging.
    Herbst EB; Unnikrishnan S; Wang S; Klibanov AL; Hossack JA; Mauldin FW
    Invest Radiol; 2017 Feb; 52(2):95-102. PubMed ID: 27495188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic Traveling Waves for Near-Wall Positioning of Single Microbubbles in a Flowing Channel.
    Kim YC; Vijayaratnam PRS; Blanloeuil P; Taylor RA; Barber TJ
    Ultrasound Med Biol; 2023 Apr; 49(4):961-969. PubMed ID: 36669943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual frequency method for simultaneous translation and real-time imaging of ultrasound contrast agents within large blood vessels.
    Patil AV; Rychak JJ; Allen JS; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2009 Dec; 35(12):2021-30. PubMed ID: 19828229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification.
    Kooiman K; van Rooij T; Qin B; Mastik F; Vos HJ; Versluis M; Klibanov AL; de Jong N; Villanueva FS; Chen X
    PLoS One; 2017; 12(7):e0180747. PubMed ID: 28686673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Acoustic Trapping With Plane Wave Imaging for Localized Microbubble Accumulation in Large Vessels.
    Nie L; Harput S; Cowell DMJ; Carpenter TM; Mclaughlan JR; Freear S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1193-1204. PubMed ID: 29969392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational framework for the multiphysics simulation of microbubble-mediated sonothrombolysis using a forward-viewing intravascular transducer.
    Tan ZQ; Ooi EH; Chiew YS; Foo JJ; Ng EYK; Ooi ET
    Ultrasonics; 2023 May; 131():106961. PubMed ID: 36812819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic detection of controlled laser-induced microbubble creation in gelatin.
    Tse C; Zohdy MJ; Ye JY; Norris TB; Balogh LP; Hollman KW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1962-9. PubMed ID: 16422408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doppler Passive Acoustic Mapping.
    Pouliopoulos AN; Smith CAB; Bezer JH; El Ghamrawy A; Sujarittam K; Bouldin CJ; Morse SV; Tang MX; Choi JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2692-2703. PubMed ID: 32746222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.