BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 24374922)

  • 1. Oxidative modification of lipoproteins.
    Arai H
    Subcell Biochem; 2014; 77():103-14. PubMed ID: 24374922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent adducts formed by reaction of oxidized unsaturated fatty acids with amines increase macrophage viability.
    Riazy M; Lougheed M; Adomat HH; Guns ES; Eigendorf GK; Duronio V; Steinbrecher UP
    Free Radic Biol Med; 2011 Nov; 51(10):1926-36. PubMed ID: 21930200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of HDL-apolipoproteins to the inhibition of low density lipoprotein oxidation and lipid accumulation in macrophages.
    Lin KY; Chen YL; Shih CC; Pan JP; Chan WE; Chiang AN
    J Cell Biochem; 2002; 86(2):258-67. PubMed ID: 12111995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of human blood monocytes by oxidized polyunsaturated fatty acids: a possible mechanism for the generation of lipid peroxides in the circulation.
    Görög P
    Int J Exp Pathol; 1991 Apr; 72(2):227-37. PubMed ID: 2015203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid hydroperoxide-derived adduction to amino-phospholipid in biomembrane.
    Hisaka S; Osawa T
    Subcell Biochem; 2014; 77():41-8. PubMed ID: 24374916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased plasma and lipoprotein lipid peroxidation in apo E-deficient mice.
    Hayek T; Oiknine J; Brook JG; Aviram M
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1567-74. PubMed ID: 8024602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin.
    Burkitt MJ
    Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis.
    Staprans I; Pan XM; Rapp JH; Feingold KR
    Mol Nutr Food Res; 2005 Nov; 49(11):1075-82. PubMed ID: 16270280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis.
    Leonarduzzi G; Gamba P; Gargiulo S; Biasi F; Poli G
    Free Radic Biol Med; 2012 Jan; 52(1):19-34. PubMed ID: 22037514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of high-density lipoprotein HDL3 leads to exposure of apo-AI and apo-AII epitopes and to formation of aldehyde protein adducts, and influences binding of oxidized low-density lipoprotein to type I and type III collagen in vitro1.
    Greilberger J; Jürgens G
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):185-91. PubMed ID: 9512478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin induced apolipoprotein B crosslinking in low-density lipoprotein peroxidation.
    Miller YI; Felikman Y; Shaklai N
    Arch Biochem Biophys; 1996 Feb; 326(2):252-60. PubMed ID: 8611031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid hydroperoxide involvement in copper-dependent and independent oxidation of low density lipoproteins.
    Thomas CE; Jackson RL
    J Pharmacol Exp Ther; 1991 Mar; 256(3):1182-8. PubMed ID: 2005580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis.
    Spiteller G
    Mol Nutr Food Res; 2005 Nov; 49(11):999-1013. PubMed ID: 16270286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL.
    Wagner P; Heinecke JW
    Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3338-46. PubMed ID: 9409331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives.
    Rubbo H; Parthasarathy S; Barnes S; Kirk M; Kalyanaraman B; Freeman BA
    Arch Biochem Biophys; 1995 Dec; 324(1):15-25. PubMed ID: 7503550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stability of apolipoprotein B100 in low-density lipoprotein is disrupted at early stages of oxidation while neutral lipid core organization is conserved.
    Prassl R; Schuster B; Laggner P; Flamant C; Nigon F; Chapman MJ
    Biochemistry; 1998 Jan; 37(3):938-44. PubMed ID: 9454584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidized low density lipoproteins in atherogenesis: role of dietary modification.
    Reaven PD; Witztum JL
    Annu Rev Nutr; 1996; 16():51-71. PubMed ID: 8839919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular action of vitamin E in lipoprotein oxidation: implications for atherosclerosis.
    Thomas SR; Stocker R
    Free Radic Biol Med; 2000 Jun; 28(12):1795-805. PubMed ID: 10946221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oolonghomobisflavan A on oxidation of low-density lipoprotein.
    Sukhbold E; Sekimoto S; Watanabe E; Yamazaki A; Yang L; Takasugi M; Yamada K; Hosomi R; Fukunaga K; Arai H
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1569-1575. PubMed ID: 28463548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute and long-term effects of low-density lipoprotein (LDL)-apheresis on oxidative damage to LDL and reducing capacity of erythrocytes in patients with severe familial hypercholesterolaemia.
    Stefanutti C; Di Giacomo S; Vivenzio A; Isacchi GC; Masella R; Caprari P; Varì R; Tarzia A; Mosiello A; Cantafora A
    Clin Sci (Lond); 2001 Feb; 100(2):191-8. PubMed ID: 11171288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.