These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 24374973)
21. Bacteriological findings regarding the hygienic safety of poultry litter intended as an ingredient of feeds for ruminants. Ogonowski K; Barnard ML; Giesecke WH Onderstepoort J Vet Res; 1984 Dec; 51(4):249-52. PubMed ID: 6398417 [TBL] [Abstract][Full Text] [Related]
22. Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide. Kim SR; Rhee MS; Kim BC; Kim KH Int J Food Microbiol; 2007 Aug; 118(1):52-61. PubMed ID: 17604865 [TBL] [Abstract][Full Text] [Related]
23. Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Koseki S; Yamamoto K Int J Food Microbiol; 2006 Jul; 110(1):108-11. PubMed ID: 16682092 [TBL] [Abstract][Full Text] [Related]
24. Growth and survival of selected pathogens in margarine-style table spreads. Guentert AM; Linton RH J Environ Health; 2003 May; 65(9):9-14; quiz 27-8. PubMed ID: 12762119 [TBL] [Abstract][Full Text] [Related]
25. Combine thermal processing with polyvalent phage LPEK22 to prevent the Escherichia coli and Salmonella enterica contamination in food. Zhang Y; Zou G; Islam MS; Liu K; Xue S; Song Z; Ye Y; Zhou Y; Shi Y; Wei S; Zhou R; Chen H; Li J Food Res Int; 2023 Mar; 165():112454. PubMed ID: 36869473 [TBL] [Abstract][Full Text] [Related]
26. Effect of the raw extract of Arthrinium strains (Hyphomycetes, Dematiaceae) on the growth of pathogenic bacteria in poultry feed. Aissaoui H; Agut M; Calvo Torras MA Microbios; 1999; 100(396):109-16. PubMed ID: 10581733 [TBL] [Abstract][Full Text] [Related]
27. Influence of wet distiller's grains on prevalence of Escherichia coli O157:H7 and Salmonella in feedlot cattle and antimicrobial susceptibility of generic Escherichia coli isolates. Edrington TS; MacDonald JC; Farrow RL; Callaway TR; Anderson RC; Nisbet DJ Foodborne Pathog Dis; 2010 May; 7(5):605-8. PubMed ID: 20132029 [TBL] [Abstract][Full Text] [Related]
28. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: a review. Rhoades JR; Duffy G; Koutsoumanis K Food Microbiol; 2009 Jun; 26(4):357-76. PubMed ID: 19376457 [TBL] [Abstract][Full Text] [Related]
29. A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions. Alvarez-Ordóñez A; Fernández A; Bernardo A; López M Foodborne Pathog Dis; 2009 Nov; 6(9):1147-55. PubMed ID: 19694554 [TBL] [Abstract][Full Text] [Related]
30. Efficacy of European starling control to reduce Salmonella enterica contamination in a concentrated animal feeding operation in the Texas panhandle. Carlson JC; Engeman RM; Hyatt DR; Gilliland RL; DeLiberto TJ; Clark L; Bodenchuk MJ; Linz GM BMC Vet Res; 2011 Feb; 7():9. PubMed ID: 21324202 [TBL] [Abstract][Full Text] [Related]
31. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas. Mahmoud BS; Bhagat AR; Linton RH Food Microbiol; 2007; 24(7-8):736-44. PubMed ID: 17613371 [TBL] [Abstract][Full Text] [Related]
32. Estimating the probability and level of contamination with Salmonella of feed for finishing pigs produced in Switzerland--the impact of the production pathway. Sauli I; Danuser J; Geeraerd AH; Van Impe JF; Rüfenacht J; Bissig-Choisat B; Wenk C; Stärk KD Int J Food Microbiol; 2005 Apr; 100(1-3):289-310. PubMed ID: 15854713 [TBL] [Abstract][Full Text] [Related]
33. The growth, survival and thermal inactivation of Escherichia coli O157:H7 in a traditional South African sausage. Charimba G; Hugo CJ; Hugo A Meat Sci; 2010 May; 85(1):89-95. PubMed ID: 20374870 [TBL] [Abstract][Full Text] [Related]
34. An investigation of the thermal inactivation of Staphylococcus aureus and the potential for increased thermotolerance as a result of chilled storage. Kennedy J; Blair IS; McDowell DA; Bolton DJ J Appl Microbiol; 2005; 99(5):1229-35. PubMed ID: 16238754 [TBL] [Abstract][Full Text] [Related]
35. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China. Chen T; Jin Y; Shen D Waste Manag; 2015 Nov; 45():42-50. PubMed ID: 26188613 [TBL] [Abstract][Full Text] [Related]
36. Microbiological hazard identification and exposure assessment of food prepared and served in rural households of Lungwena, Malawi. Taulo S; Wetlesen A; Abrahamsen R; Kululanga G; Mkakosya R; Grimason A Int J Food Microbiol; 2008 Jul; 125(2):111-6. PubMed ID: 18558451 [TBL] [Abstract][Full Text] [Related]
37. Effects of restricted antimicrobial exposure on antimicrobial resistance in fecal Escherichia coli from feedlot cattle. Morley PS; Dargatz DA; Hyatt DR; Dewell GA; Patterson JG; Burgess BA; Wittum TE Foodborne Pathog Dis; 2011 Jan; 8(1):87-98. PubMed ID: 21034271 [TBL] [Abstract][Full Text] [Related]
38. Development of an effective treatment for A 5-log reduction of Escherichia coli in refrigerated pickle products. Lu HJ; Breidt F; Pérez-Díaz I J Food Sci; 2013 Feb; 78(2):M264-9. PubMed ID: 23330823 [TBL] [Abstract][Full Text] [Related]
39. Factors associated with the presence of Escherichia coli O157 in feedlot-cattle water and feed in the Midwestern USA. Sargeant JM; Sanderson MW; Griffin DD; Smith RA Prev Vet Med; 2004 Dec; 66(1-4):207-37. PubMed ID: 15579344 [TBL] [Abstract][Full Text] [Related]
40. Effects of feed-supplementation and hide-spray application of two sources of tannins on enteric and hide bacteria of feedlot cattle. Gutierrez-Banuelos H; Pinchak WE; Min BR; Carstens GE; Anderson RC; Tedeschi LO; Krueger WK; Krueger NA; Lancaster PA; Gomez RR J Environ Sci Health B; 2011; 46(4):360-5. PubMed ID: 21547824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]