These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24375518)

  • 1. Biologically inspired omniphobic surfaces by reverse imprint lithography.
    Hensel R; Finn A; Helbig R; Braun HG; Neinhuis C; Fischer WJ; Werner C
    Adv Mater; 2014 Apr; 26(13):2029-33. PubMed ID: 24375518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The springtail cuticle as a blueprint for omniphobic surfaces.
    Hensel R; Neinhuis C; Werner C
    Chem Soc Rev; 2016 Jan; 45(2):323-41. PubMed ID: 26239626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable and Robust Fabrication Rules for Springtail-Inspired Superomniphobic Surfaces.
    Kang SM; Choi JS; An JH
    ACS Appl Mater Interfaces; 2020 May; 12(18):21120-21126. PubMed ID: 32297728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial hairy surfaces with a nearly perfect hydrophobic response.
    Hsu SH; Sigmund WM
    Langmuir; 2010 Feb; 26(3):1504-6. PubMed ID: 20052986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity.
    Xu LP; Peng J; Liu Y; Wen Y; Zhang X; Jiang L; Wang S
    ACS Nano; 2013 Jun; 7(6):5077-83. PubMed ID: 23701041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mussel-inspired anchoring for patterning cells using polydopamine.
    Sun K; Xie Y; Ye D; Zhao Y; Cui Y; Long F; Zhang W; Jiang X
    Langmuir; 2012 Jan; 28(4):2131-6. PubMed ID: 22085048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic electrostatic lithography: multiscale on-demand patterning on large-area curved surfaces.
    Wang Q; Tahir M; Zang J; Zhao X
    Adv Mater; 2012 Apr; 24(15):1947-51. PubMed ID: 22419389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation.
    Yin Q; Guo Q; Wang Z; Chen Y; Duan H; Cheng P
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1979-1987. PubMed ID: 33351582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures.
    Seo D; Cha SK; Kim G; Shin H; Hong S; Cho YH; Chun H; Choi Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5877-5884. PubMed ID: 30648844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films.
    Manabe K; Nishizawa S; Kyung KH; Shiratori S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13985-93. PubMed ID: 25093243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons from nature for green science and technology: an overview and bioinspired superliquiphobic/philic surfaces.
    Bhushan B
    Philos Trans A Math Phys Eng Sci; 2019 Feb; 377(2138):20180274. PubMed ID: 30967074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film.
    Kamei J; Saito Y; Yabu H
    Langmuir; 2014 Dec; 30(47):14118-22. PubMed ID: 25401223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold.
    Kim BH; Lee DH; Kim JY; Shin DO; Jeong HY; Hong S; Yun JM; Koo CM; Lee H; Kim SO
    Adv Mater; 2011 Dec; 23(47):5618-22. PubMed ID: 22021119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic Submicroarrayed Cross-Linked Liquid Crystal Polymer Films with Different Wettability via Colloidal Lithography.
    Zhan Y; Zhao J; Liu W; Yang B; Wei J; Yu Y
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25522-8. PubMed ID: 26509215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating.
    Zhu P; Kong T; Tang X; Wang L
    Nat Commun; 2017 Jun; 8():15823. PubMed ID: 28604698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterned polymer brushes.
    Chen T; Amin I; Jordan R
    Chem Soc Rev; 2012 Apr; 41(8):3280-96. PubMed ID: 22234473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocrack-regulated self-humidifying membranes.
    Park CH; Lee SY; Hwang DS; Shin DW; Cho DH; Lee KH; Kim TW; Kim TW; Lee M; Kim DS; Doherty CM; Thornton AW; Hill AJ; Guiver MD; Lee YM
    Nature; 2016 Apr; 532(7600):480-3. PubMed ID: 27121841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic "water strider leg" with highly refined nanogroove structure and remarkable water-repellent performance.
    Bai F; Wu J; Gong G; Guo L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16237-42. PubMed ID: 25157582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic polymer nanoparticles with antibody-like affinity for a hydrophilic peptide.
    Zeng Z; Hoshino Y; Rodriguez A; Yoo H; Shea KJ
    ACS Nano; 2010 Jan; 4(1):199-204. PubMed ID: 20014822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.