BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24375540)

  • 1. Humanized culture of periosteal progenitors in allogeneic serum enhances osteogenic differentiation and in vivo bone formation.
    Roberts SJ; Owen HC; Tam WL; Solie L; Van Cromphaut SJ; Van den Berghe G; Luyten FP
    Stem Cells Transl Med; 2014 Feb; 3(2):218-28. PubMed ID: 24375540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated and safe proliferation of human adipose-derived stem cells in medium supplemented with human serum.
    Josh F; Kobe K; Tobita M; Tanaka R; Suzuki K; Ono K; Hyakusoku H; Mizuno H
    J Nippon Med Sch; 2012; 79(6):444-52. PubMed ID: 23291843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration.
    Ogita M; Rached MT; Dworakowski E; Bilezikian JP; Kousteni S
    Endocrinology; 2008 Nov; 149(11):5713-23. PubMed ID: 18617606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Platelet Lysate Improves Bone Forming Potential of Human Progenitor Cells Expanded in Microcarrier-Based Dynamic Culture.
    Gupta P; Hall GN; Geris L; Luyten FP; Papantoniou I
    Stem Cells Transl Med; 2019 Aug; 8(8):810-821. PubMed ID: 31038850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells.
    Bolander J; Ji W; Geris L; Bloemen V; Chai YC; Schrooten J; Luyten FP
    Eur Cell Mater; 2016 Jan; 31():11-25. PubMed ID: 26728496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue culture of human alveolar periosteal sheets using a stem-cell culture medium (MesenPRO-RS™): In vitro expansion of CD146-positive cells and concomitant upregulation of osteogenic potential in vivo.
    Uematsu K; Kawase T; Nagata M; Suzuki K; Okuda K; Yoshie H; Burns DM; Takagi R
    Stem Cell Res; 2013 Jan; 10(1):1-19. PubMed ID: 23041617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of cortical bone suppresses periosteal osteoprogenitor proliferation in a paracrine manner.
    Moon YJ; Yun CY; Lee JC; Kim JR; Park BH; Cho ES
    J Mol Histol; 2016 Oct; 47(5):445-53. PubMed ID: 27394426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates.
    Bolander J; Chai YC; Geris L; Schrooten J; Lambrechts D; Roberts SJ; Luyten FP
    Biomaterials; 2016 Apr; 86():106-18. PubMed ID: 26901484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs.
    Ji W; Kerckhofs G; Geeroms C; Marechal M; Geris L; Luyten FP
    Acta Biomater; 2018 Oct; 80():97-107. PubMed ID: 30267882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells.
    De Bari C; Dell'Accio F; Karystinou A; Guillot PV; Fisk NM; Jones EA; McGonagle D; Khan IM; Archer CW; Mitsiadis TA; Donaldson AN; Luyten FP; Pitzalis C
    Arthritis Rheum; 2008 Jan; 58(1):240-50. PubMed ID: 18163504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering.
    Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE
    J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of osteoprogenitors from the jaw periosteum by a specific animal-free culture medium.
    Alexander D; Rieger M; Klein C; Ardjomandi N; Reinert S
    PLoS One; 2013; 8(12):e81674. PubMed ID: 24349108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells.
    van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G
    Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects.
    Chen D; Shen H; He Y; Chen Y; Wang Q; Lu J; Jiang Y
    Mol Med Rep; 2015 Feb; 11(2):1111-9. PubMed ID: 25373389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of Humanized Mesenchymal Stem Cell Cultures for Bone Tissue Engineering: A Systematic Review with a Focus on Platelet Derivatives.
    Shanbhag S; Stavropoulos A; Suliman S; Hervig T; Mustafa K
    Tissue Eng Part B Rev; 2017 Dec; 23(6):552-569. PubMed ID: 28610481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation.
    Shen FH; Werner BC; Liang H; Shang H; Yang N; Li X; Shimer AL; Balian G; Katz AJ
    Spine J; 2013 Jan; 13(1):32-43. PubMed ID: 23384881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior mineralization and neovascularization capacity of adult human metaphyseal periosteum-derived cells for skeletal tissue engineering applications.
    Chen D; Shen H; Shao J; Jiang Y; Lu J; He Y; Huang C
    Int J Mol Med; 2011 May; 27(5):707-13. PubMed ID: 21369695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology.
    Schantz JT; Hutmacher DW; Chim H; Ng KW; Lim TC; Teoh SH
    Cell Transplant; 2002; 11(2):125-38. PubMed ID: 12099636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.