These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 24376027)
1. Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): assessment of biocompatibility. Pergal MV; Nestorov J; Tovilović G; Ostojić S; Gođevac D; Vasiljević-Radović D; Djonlagić J J Biomed Mater Res A; 2014 Nov; 102(11):3951-64. PubMed ID: 24376027 [TBL] [Abstract][Full Text] [Related]
2. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone). Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759 [TBL] [Abstract][Full Text] [Related]
3. Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells. Stefanović IS; Djonlagić J; Tovilović G; Nestorov J; Antić VV; Ostojić S; Pergal MV J Biomed Mater Res A; 2015 Apr; 103(4):1459-75. PubMed ID: 25046378 [TBL] [Abstract][Full Text] [Related]
4. Surface characterization and protein interactions of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Luk A; Ojha U; Ruths M; Faust R Langmuir; 2011 Dec; 27(23):14160-8. PubMed ID: 22023013 [TBL] [Abstract][Full Text] [Related]
5. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
6. Influence of hydroxyl-terminated polydimethylsiloxane on high-strength biocompatible polycarbonate urethane films. Zhu R; Wang X; Yang J; Wang Y; Zhang Z; Hou Y; Lin F Biomed Mater; 2016 Dec; 12(1):015011. PubMed ID: 27934785 [TBL] [Abstract][Full Text] [Related]
7. In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. Hernandez R; Weksler J; Padsalgikar A; Runt J J Biomed Mater Res A; 2008 Nov; 87(2):546-56. PubMed ID: 18186070 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG. Li G; Li P; Qiu H; Li D; Su M; Xu K J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829 [TBL] [Abstract][Full Text] [Related]
9. Dynamic protein adsorption at the polyurethane copolymer/water interface. Yaseen M; Salacinski HJ; Seifalian AM; Lu JR Biomed Mater; 2008 Sep; 3(3):034123. PubMed ID: 18765894 [TBL] [Abstract][Full Text] [Related]
10. In vitro biocompatibility of PTMO-based polyurethanes and those containing PDMS blocks. Hsu SH; Tseng HJ J Biomater Appl; 2004 Oct; 19(2):135-46. PubMed ID: 15381786 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204 [TBL] [Abstract][Full Text] [Related]
12. Enhanced biocompatibility in biostable poly(carbonate)urethane. Hsu SH; Kao YC; Lin ZC Macromol Biosci; 2004 Apr; 4(4):464-70. PubMed ID: 15468239 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility and biostability of a series of poly(carbonate)urethanes. Hsu SH; Lin ZC Colloids Surf B Biointerfaces; 2004 Jul; 36(1):1-12. PubMed ID: 15261017 [TBL] [Abstract][Full Text] [Related]
14. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate). Chen Z; Cheng S; Xu K Biomaterials; 2009 Apr; 30(12):2219-30. PubMed ID: 19167751 [TBL] [Abstract][Full Text] [Related]
15. Microphase separation structure influences protein interactions with poly(urethane urea) surfaces. Xu LC; Siedlecki CA J Biomed Mater Res A; 2010 Jan; 92(1):126-36. PubMed ID: 19165784 [TBL] [Abstract][Full Text] [Related]
16. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study. Park JH; Park KD; Bae YH Biomaterials; 1999 May; 20(10):943-53. PubMed ID: 10353648 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates. Yin S; Xia Y; Jia Q; Hou ZS; Zhang N J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855 [TBL] [Abstract][Full Text] [Related]
18. Effect of microphase separation on the protein resistance of a polymeric surface. Ma C; Hou Y; Liu S; Zhang G Langmuir; 2009 Aug; 25(16):9467-72. PubMed ID: 19371047 [TBL] [Abstract][Full Text] [Related]
19. Surface structural conformations of fibrinogen polypeptides for improved biocompatibility. Yaseen M; Zhao X; Freund A; Seifalian AM; Lu JR Biomaterials; 2010 May; 31(14):3781-92. PubMed ID: 20153048 [TBL] [Abstract][Full Text] [Related]
20. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Sheikh Z; Khan AS; Roohpour N; Glogauer M; Rehman IU Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():267-275. PubMed ID: 27524021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]