These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24376077)

  • 41. Recent advances in genetic code engineering in Escherichia coli.
    Hoesl MG; Budisa N
    Curr Opin Biotechnol; 2012 Oct; 23(5):751-7. PubMed ID: 22237016
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amersham Prize winner. Expanding the genetic code.
    Wang L
    Science; 2003 Oct; 302(5645):584-5. PubMed ID: 14576413
    [No Abstract]   [Full Text] [Related]  

  • 43. Selenocysteine-independent suppression of UGA codons in the archaeon Methanococcus maripaludis.
    Seyhan D; Jehmlich N; von Bergen M; Fersch J; Rother M
    Biochim Biophys Acta; 2015 Nov; 1850(11):2385-92. PubMed ID: 26215786
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using selenocysteine-specific reporters to screen for efficient tRNA
    Chung CZ; Söll D; Krahn N
    Methods Enzymol; 2022; 662():63-93. PubMed ID: 35101219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Yielding at stop codons: expanding the genetic code.
    Hendrickson TL
    Chem Biol; 2003 Jun; 10(6):475-6. PubMed ID: 12837377
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Introducing Selenocysteine into Recombinant Proteins in Escherichia coli.
    Chung CZ; Miller C; Söll D; Krahn N
    Curr Protoc; 2021 Feb; 1(2):e54. PubMed ID: 33566458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Revealing the amino acid composition of proteins within an expanded genetic code.
    Aerni HR; Shifman MA; Rogulina S; O'Donoghue P; Rinehart J
    Nucleic Acids Res; 2015 Jan; 43(2):e8. PubMed ID: 25378305
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural basis for dynamic interdomain movement and RNA recognition of the selenocysteine-specific elongation factor SelB.
    Ose T; Soler N; Rasubala L; Kuroki K; Kohda D; Fourmy D; Yoshizawa S; Maenaka K
    Structure; 2007 May; 15(5):577-86. PubMed ID: 17502103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Knowing when not to stop: selenocysteine incorporation in eukaryotes.
    Low SC; Berry MJ
    Trends Biochem Sci; 1996 Jun; 21(6):203-8. PubMed ID: 8744353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient Expression of Glutathione Peroxidase with Chimeric tRNA in Amber-less Escherichia coli.
    Fan Z; Song J; Guan T; Lv X; Wei J
    ACS Synth Biol; 2018 Jan; 7(1):249-257. PubMed ID: 28866886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expanding the Genetic Code of a Photoautotrophic Organism.
    Chemla Y; Friedman M; Heltberg M; Bakhrat A; Nagar E; Schwarz R; Jensen MH; Alfonta L
    Biochemistry; 2017 Apr; 56(16):2161-2165. PubMed ID: 28394580
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Context effects of genetic code expansion by stop codon suppression.
    Chemla Y; Ozer E; Algov I; Alfonta L
    Curr Opin Chem Biol; 2018 Oct; 46():146-155. PubMed ID: 30064064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A tRNA-dependent cysteine biosynthesis enzyme recognizes the selenocysteine-specific tRNA in Escherichia coli.
    Yuan J; Hohn MJ; Sherrer RL; Palioura S; Su D; Söll D
    FEBS Lett; 2010 Jul; 584(13):2857-61. PubMed ID: 20493852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transfer RNA mutation and the malleability of the genetic code.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1377-80. PubMed ID: 8107079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Towards understanding selenocysteine incorporation into bacterial proteins.
    Fischer N; Paleskava A; Gromadski KB; Konevega AL; Wahl MC; Stark H; Rodnina MV
    Biol Chem; 2007 Oct; 388(10):1061-7. PubMed ID: 17937620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic Code Expansion by Degeneracy Reprogramming of Arginyl Codons.
    Lee KB; Hou CY; Kim CE; Kim DM; Suga H; Kang TJ
    Chembiochem; 2016 Jul; 17(13):1198-201. PubMed ID: 27151886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amino acid sequence analysis of Escherichia coli formate dehydrogenase (FDHH) confirms that TGA in the gene encodes selenocysteine in the gene product.
    Stadtman TC; Davis JN; Ching WM; Zinoni F; Böck A
    Biofactors; 1991 Jan; 3(1):21-7. PubMed ID: 1829362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reducing the genetic code induces massive rearrangement of the proteome.
    O'Donoghue P; Prat L; Kucklick M; Schäfer JG; Riedel K; Rinehart J; Söll D; Heinemann IU
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17206-11. PubMed ID: 25404328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic code supports targeted insertion of two amino acids by one codon.
    Turanov AA; Lobanov AV; Fomenko DE; Morrison HG; Sogin ML; Klobutcher LA; Hatfield DL; Gladyshev VN
    Science; 2009 Jan; 323(5911):259-61. PubMed ID: 19131629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.