These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24376126)

  • 21. Foxg1 is required for development of the vertebrate olfactory system.
    Duggan CD; DeMaria S; Baudhuin A; Stafford D; Ngai J
    J Neurosci; 2008 May; 28(20):5229-39. PubMed ID: 18480279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trpm5 expression in the olfactory epithelium.
    Pyrski M; Eckstein E; Schmid A; Bufe B; Weiss J; Chubanov V; Boehm U; Zufall F
    Mol Cell Neurosci; 2017 Apr; 80():75-88. PubMed ID: 28188885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4.
    Chen B; Kim EH; Xu PX
    Dev Biol; 2009 Feb; 326(1):75-85. PubMed ID: 19027001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium.
    Kawauchi S; Beites CL; Crocker CE; Wu HH; Bonnin A; Murray R; Calof AL
    Dev Neurosci; 2004; 26(2-4):166-80. PubMed ID: 15711058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-myc controls proliferation, morphogenesis, and patterning of the inner ear.
    Domínguez-Frutos E; López-Hernández I; Vendrell V; Neves J; Gallozzi M; Gutsche K; Quintana L; Sharpe J; Knoepfler PS; Eisenman RN; Trumpp A; Giráldez F; Schimmang T
    J Neurosci; 2011 May; 31(19):7178-89. PubMed ID: 21562282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cux2 acts as a critical regulator for neurogenesis in the olfactory epithelium of vertebrates.
    Wittmann W; Iulianella A; Gunhaga L
    Dev Biol; 2014 Apr; 388(1):35-47. PubMed ID: 24512687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reproductive dysfunction and decreased GnRH neurogenesis in a mouse model of CHARGE syndrome.
    Layman WS; Hurd EA; Martin DM
    Hum Mol Genet; 2011 Aug; 20(16):3138-50. PubMed ID: 21596839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Olfactory ensheathing cells abutting the embryonic olfactory bulb express Frzb, whose deletion disrupts olfactory axon targeting.
    Rich CA; Perera SN; Andratschke J; Stolt CC; Buehler DP; Southard-Smith EM; Wegner M; Britsch S; Baker CVH
    Glia; 2018 Dec; 66(12):2617-2631. PubMed ID: 30256452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurog1 and Neurog2 coordinately regulate development of the olfactory system.
    Shaker T; Dennis D; Kurrasch DM; Schuurmans C
    Neural Dev; 2012 Aug; 7():28. PubMed ID: 22906231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and immunohistochemical localization of heparan sulphate proteoglycan N-syndecan in the migratory pathway from the rat olfactory placode.
    Toba Y; Horie M; Sango K; Tokashiki A; Matsui F; Oohira A; Kawano H
    Eur J Neurosci; 2002 May; 15(9):1461-73. PubMed ID: 12028356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. c-Myc controls the fate of neural progenitor cells during cerebral cortex development.
    Wang XL; Ma YX; Xu RJ; Ma JJ; Zhang HC; Qi SB; Xu JH; Qin XZ; Zhang HN; Liu CM; Chen JQ; Li B; Yang HL; Saijilafu
    J Cell Physiol; 2020 Apr; 235(4):4011-4021. PubMed ID: 31625158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Widespread defects in the primary olfactory pathway caused by loss of Mash1 function.
    Murray RC; Navi D; Fesenko J; Lander AD; Calof AL
    J Neurosci; 2003 Mar; 23(5):1769-80. PubMed ID: 12629181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Six1 is essential for early neurogenesis in the development of olfactory epithelium.
    Ikeda K; Ookawara S; Sato S; Ando Z; Kageyama R; Kawakami K
    Dev Biol; 2007 Nov; 311(1):53-68. PubMed ID: 17880938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A balance of BMP and notch activity regulates neurogenesis and olfactory nerve formation.
    Maier E; Nord H; von Hofsten J; Gunhaga L
    PLoS One; 2011 Feb; 6(2):e17379. PubMed ID: 21383851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of glycoproteins in the vomeronasal organ reveals a novel spatiotemporal pattern of sensory neurone maturation.
    Clarris HJ; Key B
    J Neurobiol; 2001 Feb; 46(2):113-25. PubMed ID: 11153013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurons that migrate from the olfactory epithelium in the chick express luteinizing hormone-releasing hormone.
    Norgren RB; Lehman MN
    Endocrinology; 1991 Mar; 128(3):1676-8. PubMed ID: 1999180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two olfactory placode derived galanin subpopulations: luteinizing hormone-releasing hormone neurones and vomeronasal cells.
    Key S; Wray S
    J Neuroendocrinol; 2000 Jun; 12(6):535-45. PubMed ID: 10844582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibroblast growth factor signaling regulates neurogenesis at multiple stages in the embryonic olfactory epithelium.
    Murdoch B; Roskams AJ
    Stem Cells Dev; 2013 Feb; 22(4):525-37. PubMed ID: 23137310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insm1 promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic.
    Rosenbaum JN; Duggan A; García-Añoveros J
    Neural Dev; 2011 Feb; 6():6. PubMed ID: 21284846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic expression of neurogenic markers in the developing chick olfactory epithelium.
    Maier E; Gunhaga L
    Dev Dyn; 2009 Jun; 238(6):1617-25. PubMed ID: 19441054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.