These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24376182)

  • 1. Detection and structural characterization of insulin prefibrilar oligomers using surface enhanced Raman spectroscopy.
    Kurouski D; Sorci M; Postiglione T; Belfort G; Lednev IK
    Biotechnol Prog; 2014; 30(2):488-95. PubMed ID: 24376182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crocein Orange G mediated detection and modulation of amyloid fibrillation revealed by surface-enhanced Raman spectroscopy.
    Zhang L; Lian W; Li P; Ma H; Han X; Zhao B; Chen Z
    Biosens Bioelectron; 2020 Jan; 148():111816. PubMed ID: 31678823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models.
    Sereda V; Sawaya MR; Lednev IK
    J Am Chem Soc; 2015 Sep; 137(35):11312-20. PubMed ID: 26278047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Sizes of Aggregates of Insulin Analogs and the Conformations of the Constituent Protein Molecules: A Concomitant Dynamic Light Scattering and Raman Spectroscopy Study.
    Zhou C; Qi W; Lewis EN; Carpenter JF
    J Pharm Sci; 2016 Feb; 105(2):551-558. PubMed ID: 26869418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Mechanisms of Tip Enhancement of Raman Scattering by Protein Aggregates.
    Sereda V; Lednev IK
    Appl Spectrosc; 2017 Jan; 71(1):118-128. PubMed ID: 27407009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrillation of human insulin A and B chains.
    Hong DP; Ahmad A; Fink AL
    Biochemistry; 2006 Aug; 45(30):9342-53. PubMed ID: 16866381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry.
    Nettleton EJ; Tito P; Sunde M; Bouchard M; Dobson CM; Robinson CV
    Biophys J; 2000 Aug; 79(2):1053-65. PubMed ID: 10920035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Structural Organization of Insulin Fibril Polymorphs Revealed by Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR).
    Rizevsky S; Kurouski D
    Chembiochem; 2020 Feb; 21(4):481-485. PubMed ID: 31299124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein.
    Selivanova OM; Galzitskaya OV
    Biochemistry (Mosc); 2012 Nov; 77(11):1237-47. PubMed ID: 23240561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering.
    Deckert-Gaudig T; Kämmer E; Deckert V
    J Biophotonics; 2012 Mar; 5(3):215-9. PubMed ID: 22271749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent insulin oligomer reaction pathway prior to fibril formation: cooling and seeding.
    Sorci M; Grassucci RA; Hahn I; Frank J; Belfort G
    Proteins; 2009 Oct; 77(1):62-73. PubMed ID: 19408310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent disintegration of insulin amyloid fibrils monitored with atomic force microscopy and surface-enhanced Raman spectroscopy.
    Darussalam EY; Peterfi O; Deckert-Gaudig T; Roussille L; Deckert V
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119672. PubMed ID: 33852991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin amyloid superstructures as templates for surface enhanced Raman scattering.
    Wójcik S; Babenko V; Dzwolak W
    Langmuir; 2010 Dec; 26(23):18303-7. PubMed ID: 21038855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of pathway of insulin fibrillation by a small molecule helix inducer 2,2,2-trifluoroethanol.
    Banerjee V; Das KP
    Colloids Surf B Biointerfaces; 2012 Apr; 92():142-50. PubMed ID: 22178183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process.
    Amdursky N; Gazit E; Rosenman G
    Biochem Biophys Res Commun; 2012 Mar; 419(2):232-7. PubMed ID: 22333569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.