BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24376368)

  • 1. Aromatic Claisen Rearrangements of O-prenylated tyrosine and model prenyl aryl ethers: Computational study of the role of water on acceleration of Claisen rearrangements.
    Osuna S; Kim S; Bollot G; Houk KN
    European J Org Chem; 2013 May; 2013(14):. PubMed ID: 24376368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic basis of ribosomal peptide prenylation in cyanobacteria.
    McIntosh JA; Donia MS; Nair SK; Schmidt EW
    J Am Chem Soc; 2011 Aug; 133(34):13698-705. PubMed ID: 21766822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pericyclic prenylation: peptide modification through a Claisen rearrangement.
    Majmudar JD; Gibbs RA
    Chembiochem; 2011 Dec; 12(18):2723-6. PubMed ID: 22114066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting Aromatic Claisen Rearrangement Using Unstable Aryl Sulfonium/Iodonium Species: The Strategy of Breaking Up the Whole into Parts.
    Liang Y; Peng B
    Acc Chem Res; 2022 Aug; 55(15):2103-2122. PubMed ID: 35861672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Claisen rearrangements of benzyl vinyl ethers: theoretical investigation of mechanism, substituent effects, and regioselectivity.
    Krenske EH; Burns JM; McGeary RP
    Org Biomol Chem; 2017 Sep; 15(37):7887-7893. PubMed ID: 28891574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational and Further Experimental Explorations of the Competing Cascades Following Claisen Rearrangements of Aryl Propargyl Ethers: Substituent Effects on Reactivity and Regioselectivity.
    Ramirez M; Vece V; Hanessian S; Houk KN
    J Org Chem; 2021 Dec; 86(24):17955-17964. PubMed ID: 34846894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanistic insights on aryl propargyl ether Claisen rearrangement.
    Srinivasadesikan V; Dai JK; Lee SL
    Org Biomol Chem; 2014 Jun; 12(24):4163-71. PubMed ID: 24827936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate reaction enthalpies and sources of error in DFT thermochemistry for aldol, Mannich, and alpha-aminoxylation reactions.
    Wheeler SE; Moran A; Pieniazek SN; Houk KN
    J Phys Chem A; 2009 Sep; 113(38):10376-84. PubMed ID: 19711937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regioselectivity in aromatic Claisen rearrangements.
    Gozzo FC; Fernandes SA; Rodrigues DC; Eberlin MN; Marsaioli AJ
    J Org Chem; 2003 Jul; 68(14):5493-9. PubMed ID: 12839439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions.
    Morgado CA; Jurecka P; Svozil D; Hobza P; Sponer J
    Phys Chem Chem Phys; 2010 Apr; 12(14):3522-34. PubMed ID: 20336251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition states and energetics of nucleophilic additions of thiols to substituted α,β-unsaturated ketones: substituent effects involve enone stabilization, product branching, and solvation.
    Krenske EH; Petter RC; Zhu Z; Houk KN
    J Org Chem; 2011 Jun; 76(12):5074-81. PubMed ID: 21574592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified total synthesis of amorfrutins A and C via the Claisen rearrangement.
    Fujita T; Kuwahara S; Ogura Y
    Biosci Biotechnol Biochem; 2019 Sep; 83(9):1635-1641. PubMed ID: 31130067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of gas-phase molecular complex formation between 2-hydroxy thiophenol and a water molecule.
    Kumar Deb D; Sarkar B
    Phys Chem Chem Phys; 2017 Jan; 19(3):2466-2478. PubMed ID: 28058433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements.
    McIntosh JA; Lin Z; Tianero MD; Schmidt EW
    ACS Chem Biol; 2013 May; 8(5):877-83. PubMed ID: 23411099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational methods to calculate accurate activation and reaction energies of 1,3-dipolar cycloadditions of 24 1,3-dipoles.
    Lan Y; Zou L; Cao Y; Houk KN
    J Phys Chem A; 2011 Dec; 115(47):13906-20. PubMed ID: 21967148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating the geometry and Raman spectrum of physiological bis(L-histidinato)copper(II): an assessment of DFT functionals for aqueous and isolated systems.
    Sabolović J; Ramek M; Marković M
    J Mol Model; 2017 Sep; 23(10):290. PubMed ID: 28952023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral cobalt(ii) complex-promoted asymmetric
    Zeng H; Wang L; Su Z; Ying M; Lin L; Feng X
    Chem Sci; 2023 Dec; 14(47):13979-13985. PubMed ID: 38075639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the structure, stability, and spectral signatures of hydride ion-water clusters.
    Prakash M; Gopalsamy K; Subramanian V
    J Chem Phys; 2011 Dec; 135(21):214308. PubMed ID: 22149793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.